An algebra problem by Wildan Bagus Wicaksono

Algebra Level 3

y = 19 8 3 7 4 3 ( 12 18 + 4 2 ) 36 4 3 2 16 3 15 y=\frac { \sqrt { 19-8\sqrt { 3 } } -\sqrt { 7-4\sqrt { 3 } } }{ \left( \sqrt { 12 } -\sqrt { 18 } +4\sqrt { 2 } \right) \sqrt [ 4 ]{ 36 } } -\frac { 3\sqrt { 2 } -16\sqrt { 3 } }{ 15 }

For y y as defined above, find the value of y 1 + 2 \left\lfloor y-1 \right\rfloor +2 .


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

y = 19 8 3 7 4 3 ( 12 18 + 4 2 ) 36 4 3 2 16 3 15 = 4 2 2 4 3 + 3 2 2 2 2 2 3 + 3 2 ( 2 3 3 2 + 4 2 ) 6 2 4 3 2 16 3 15 = ( 4 3 ) 2 ( 2 3 ) 2 ( 2 3 + 2 ) 6 3 2 16 3 15 = 4 3 2 + 3 6 2 + 2 3 3 2 16 3 15 = 2 6 2 + 2 3 3 2 16 3 15 = 1 3 2 + 3 3 2 16 3 15 = 3 2 3 ( 3 2 + 3 ) ( 3 2 3 ) 3 2 16 3 15 = 3 2 3 18 3 3 2 16 3 15 = 3 2 3 15 3 2 16 3 15 = 3 \begin{aligned} y & = \frac {\sqrt{19-8\sqrt 3}-\sqrt{7-4\sqrt 3}}{\left(\sqrt{12}-\sqrt{18}+4\sqrt 2\right)\sqrt[4]{36}} - \frac {3\sqrt 2-16\sqrt 3}{15} \\ & = \frac {\sqrt{4^2-2\cdot 4\sqrt 3 + \sqrt 3^2}-\sqrt{2^2-2\cdot 2\sqrt 3 + \sqrt 3^2}}{\left(2\sqrt{3}-3\sqrt{2}+4\sqrt 2\right)\sqrt[4]{6^2}} - \frac {3\sqrt 2-16\sqrt 3}{15} \\ & = \frac {\sqrt{(4- \sqrt 3)^2}-\sqrt{(2-\sqrt 3)^2}}{\left(2\sqrt{3}+\sqrt{2}\right)\sqrt{6}} - \frac {3\sqrt 2-16\sqrt 3}{15} \\ & = \frac {4- \sqrt 3-2+\sqrt 3}{6\sqrt{2}+2\sqrt 3} - \frac {3\sqrt 2-16\sqrt 3}{15} \\ & = \frac {2}{6\sqrt{2}+2\sqrt 3} - \frac {3\sqrt 2-16\sqrt 3}{15} \\ & = \frac {1}{3\sqrt{2}+\sqrt 3} - \frac {3\sqrt 2-16\sqrt 3}{15} \\ & = \frac {3\sqrt{2}-\sqrt 3}{(3\sqrt{2}+\sqrt 3)(3\sqrt{2}-\sqrt 3)} - \frac {3\sqrt 2-16\sqrt 3}{15} \\ & = \frac {3\sqrt{2}-\sqrt 3}{18-3} - \frac {3\sqrt 2-16\sqrt 3}{15} \\ & = \frac {3\sqrt{2}-\sqrt 3}{15} - \frac {3\sqrt 2-16\sqrt 3}{15} \\ & = \sqrt 3 \end{aligned}

y 1 + 2 = 1.732 1 + 2 = 2 \implies \lfloor y-1 \rfloor + 2 = \lfloor 1.732-1 \rfloor + 2 = \boxed{2}

19 8 3 = 19 2 16 3 = ( 4 3 ) 2 = 4 3 7 4 3 = 7 2 4 3 = ( 2 3 ) 2 = 2 3 19 8 3 7 4 3 = ( 4 3 ) ( 2 3 ) 19 8 3 7 4 3 = 4 3 2 + 3 19 8 3 7 4 3 = 2 \sqrt { 19-8\sqrt { 3 } } =\sqrt { 19-2\sqrt { 16\cdot 3 } } =\sqrt { { \left( 4-\sqrt { 3 } \right) }^{ 2 } } =4-\sqrt { 3 } \\ \sqrt { 7-4\sqrt { 3 } } =\sqrt { 7-2\sqrt { 4\cdot 3 } } =\sqrt { { \left( 2-\sqrt { 3 } \right) }^{ 2 } } =2-\sqrt { 3 } \\ \sqrt { 19-8\sqrt { 3 } } -\sqrt { 7-4\sqrt { 3 } } =\left( 4-\sqrt { 3 } \right) -\left( 2-\sqrt { 3 } \right) \\ \sqrt { 19-8\sqrt { 3 } } -\sqrt { 7-4\sqrt { 3 } } =4-\sqrt { 3 } -2+\sqrt { 3 } \\ \sqrt { 19-8\sqrt { 3 } } -\sqrt { 7-4\sqrt { 3 } } =2

y = 2 ( 12 18 + 4 2 ) 36 4 3 2 16 3 15 y=\frac { 2 }{ \left( \sqrt { 12 } -\sqrt { 18 } +4\sqrt { 2 } \right) \sqrt [ 4 ]{ 36 } } -\frac { 3\sqrt { 2 } -16\sqrt { 3 } }{ 15 }

= 2 ( 12 18 + 4 2 ) 36 4 3 2 16 3 15 = 2 ( 2 3 3 2 + 4 2 ) 6 3 2 16 3 15 = 2 ( 2 3 + 2 ) 6 3 2 16 3 15 = 2 6 2 + 2 3 3 2 16 3 15 = 1 3 2 + 3 ( 3 2 3 3 2 3 ) 3 2 16 3 15 = 3 2 3 18 3 3 2 16 3 15 = 3 2 3 3 2 + 16 3 15 = 15 3 15 = 3 =\frac { 2 }{ \left( \sqrt { 12 } -\sqrt { 18 } +4\sqrt { 2 } \right) \sqrt [ 4 ]{ 36 } } -\frac { 3\sqrt { 2 } -16\sqrt { 3 } }{ 15 } \\ =\frac { 2 }{ \left( 2\sqrt { 3 } -3\sqrt { 2 } +4\sqrt { 2 } \right) \sqrt { 6 } } -\frac { 3\sqrt { 2 } -16\sqrt { 3 } }{ 15 } \\ =\frac { 2 }{ \left( 2\sqrt { 3 } +\sqrt { 2 } \right) \sqrt { 6 } } -\frac { 3\sqrt { 2 } -16\sqrt { 3 } }{ 15 } \\ =\frac { 2 }{ 6\sqrt { 2 } +2\sqrt { 3 } } -\frac { 3\sqrt { 2 } -16\sqrt { 3 } }{ 15 } \\ =\frac { 1 }{ 3\sqrt { 2 } +\sqrt { 3 } } \cdot \left( \frac { 3\sqrt { 2 } -\sqrt { 3 } }{ 3\sqrt { 2 } -\sqrt { 3 } } \right) -\frac { 3\sqrt { 2 } -16\sqrt { 3 } }{ 15 } \\ =\frac { 3\sqrt { 2 } -\sqrt { 3 } }{ 18-3 } -\frac { 3\sqrt { 2 } -16\sqrt { 3 } }{ 15 } \\ =\frac { 3\sqrt { 2 } -\sqrt { 3 } -3\sqrt { 2 } +16\sqrt { 3 } }{ 15 } \\ =\frac { 15\sqrt { 3 } }{ 15 } \\ =\sqrt { 3 }

y = 3 y 1 + 2 = 3 1 + 2 y 1 + 2 = 1.... 1 + 2 y 1 + 2 = 0.... + 2 y 1 + 2 = 0 + 2 y 1 + 2 = 2 y=\sqrt { 3 } \\ \left\lfloor y-1 \right\rfloor +2=\left\lfloor \sqrt { 3 } -1 \right\rfloor +2\\ \left\lfloor y-1 \right\rfloor +2=\left\lfloor 1....-1 \right\rfloor +2\\ \left\lfloor y-1 \right\rfloor +2=\left\lfloor 0.... \right\rfloor +2\\ \left\lfloor y-1 \right\rfloor +2=0+2\\ \left\lfloor y-1 \right\rfloor +2=2 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...