A number theory problem by Wildan Bagus Wicaksono

Determine the sum of all possible n n values, with n < 100 n < 100 so that 2 n + 1 { 2 }^{ n }+1 is divisible by 3 3 .


The answer is 2500.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Edwin Gray
Feb 26, 2019

2^n + 1 .cong. 0 (mod 3) if n is odd. So we require the sum of all odd integers , 0 < n < 101. This is (50/2) (1 + 99) = 25 100 = 2500.

( 3 1 ) n + 1 = { i = 0 n ( n i ) 3 n i ( 1 ) i } + 1 ( 3 1 ) n + 1 = ( n 0 ) 3 n + ( n 1 ) 3 n 1 ( 1 ) 1 + . . . + ( n n 1 ) 3 ( 1 ) n 1 + ( n n ) ( 1 ) n + 1 ( 3 1 ) n + 1 = ( n 0 ) 3 n ( n 1 ) 3 n 1 + . . . + ( n n 1 ) 3 ( 1 ) n 1 + ( n n ) ( 1 ) n + 1 \large { (3-1) }^{ n }+1=\left\{ \sum _{ i=0 }^{ n }{ \left( \begin{matrix} n \\ i \end{matrix} \right) } { 3 }^{ n-i }\cdot { \left( -1 \right)^i } \right\} +1\\ { (3-1) }^{ n }+1=\left( \begin{matrix} n \\ 0 \end{matrix} \right) { 3 }^{ n }+\left( \begin{matrix} n \\ 1 \end{matrix} \right) \cdot { 3 }^{ n-1 }\cdot { \left( -1 \right) }^{ 1 }+...+\left( \begin{matrix} n \\ n-1 \end{matrix} \right) 3{ \left( -1 \right) }^{ n-1 }+\left( \begin{matrix} n \\ n \end{matrix} \right) { \left( -1 \right) }^{ n }+1\\ { (3-1) }^{ n }+1=\left( \begin{matrix} n \\ 0 \end{matrix} \right) { 3 }^{ n }-\left( \begin{matrix} n \\ 1 \end{matrix} \right) \cdot { 3 }^{ n-1 }+...+\left( \begin{matrix} n \\ n-1 \end{matrix} \right) 3{ \left( -1 \right) }^{ n-1 }+\left( \begin{matrix} n \\ n \end{matrix} \right) { \left( -1 \right) }^{ n }+1

The two decisive expressions 2 n + 1 { 2 }^{ n }+1 divisible by 3 3 are ( 1 ) n + 1 { (-1) }^{ n }+1 must be 0 0 , meaning n n must be an odd number because ( 1 ) + 1 = 0 (-1) + 1 = 0 . Thus, 2 n + 1 { 2 }^{ n }+1 is divided by 3 3 . Thus, the sum of all n n values with n < 100 n<100 ,

1 + 3 + 5 + . . . + 99 = ( 1 + 99 2 ) 2 1 + 3 + 5 + . . . + 99 = 50 2 1 + 3 + 5 + . . . + 99 = 2500 1+3+5+...+99={ \left( \frac { 1+99 }{ 2 } \right) }^{ 2 }\\ 1+3+5+...+99={ 50 }^{ 2 }\\ 1+3+5+...+99=2500

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...