An algebra problem by Wildan Bagus Wicaksono

Algebra Level 3

Let

x = 3 1 ! + 2 ! + 3 ! + 4 2 ! + 3 ! + 4 ! + 5 3 ! + 4 ! + 5 ! + . . . + 2017 2015 ! + 2016 ! + 2017 ! x=\frac { 3 }{ 1!+2!+3! } +\frac { 4 }{ 2!+3!+4! } +\frac { 5 }{ 3!+4!+5! } +...+\frac { 2017 }{ 2015!+2016!+2017! }

Determine the value of x + 1 2017 ! x+\dfrac 1{2017!} and write it in 3 decimal places.


The answer is 0.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

= 3 1 ! + 2 ! + 3 ! + 4 2 ! + 3 ! + 4 ! + 5 3 ! + 4 ! + 5 ! + . . . + 2017 2015 ! + 2016 ! + 2017 ! = k = 1 98 k + 2 k ! + ( k + 1 ) ! + ( k + 2 ) ! = k = 1 98 1 k ! { k + 2 1 + ( k + 1 ) + ( k + 1 ) ( k + 2 ) } = k = 1 98 1 k ! { k + 2 k + 2 + k 2 + 3 k + 2 } = k = 1 98 1 k ! { k + 2 k 1 + 4 k + 4 } = k = 1 98 1 k ! { k + 2 ( k + 2 ) 2 } = k = 1 98 1 k ! { 1 k + 2 } = k = 1 98 1 k ! ( k + 2 ) = k = 1 98 k + 1 k ! ( k + 1 ) ( k + 2 ) = k = 1 98 k + 2 1 ( k + 2 ) ! = k = 1 98 k + 2 ( k + 2 ) ! 1 ( k + 2 ) ! = k = 1 98 1 ( k + 1 ) ! 1 ( k + 2 ) ! \large =\frac { 3 }{ 1!+2!+3! } +\frac { 4 }{ 2!+3!+4! } +\frac { 5 }{ 3!+4!+5! } +...+\frac { 2017 }{ 2015!+2016!+2017! } \\ =\large \sum _{ k=1 }^{ 98 }{ \frac { k+2 }{ k!+(k+1)!+(k+2)! } } \\ =\large \sum _{ k=1 }^{ 98 }{ \frac { 1 }{ k! } } \left\{ \frac { k+2 }{ 1+(k+1)+(k+1)(k+2) } \right\} \\ =\large \sum _{ k=1 }^{ 98 }{ \frac { 1 }{ k! } } \left\{ \frac { k+2 }{ k+2+{ k }^{ 2 }+3k+2 } \right\} \\ =\large \sum _{ k=1 }^{ 98 }{ \frac { 1 }{ k! } } \left\{ \frac { k+2 }{ { k }^{ 1 }+4k+4 } \right\} \\ =\large \sum _{ k=1 }^{ 98 }{ \frac { 1 }{ k! } } \left\{ \frac { k+2 }{ { (k+2) }^{ 2 } } \right\} \\ =\large \sum _{ k=1 }^{ 98 }{ \frac { 1 }{ k! } } \left\{ \frac { 1 }{ k+2 } \right\} \\ =\large \sum _{ k=1 }^{ 98 }{ \frac { 1 }{ k!(k+2) } } \\ =\large \sum _{ k=1 }^{ 98 }{ \frac { k+1 }{ k!(k+1)(k+2) } } \\ =\large \sum _{ k=1 }^{ 98 }{ \frac { k+2-1 }{ (k+2)! } } \\ =\large \sum _{ k=1 }^{ 98 }{ \frac { k+2 }{ (k+2)! } } -\frac { 1 }{ (k+2)! } \\ =\large \sum _{ k=1 }^{ 98 }{ \frac { 1 }{ (k+1)! } -\frac { 1 }{ (k+2)! } }

x = 3 1 ! + 2 ! + 3 ! + 4 2 ! + 3 ! + 4 ! + 5 3 ! + 4 ! + 5 ! + . . . + 2017 2015 ! + 2016 ! + 2017 ! x = 1 2 ! 1 3 ! + 1 3 ! 1 4 ! + . . . + 1 2016 ! 1 2017 ! x = 1 2 ! 1 2017 ! x + 1 2017 ! = 1 2 ! 1 2017 ! + 1 2017 ! x + 1 2017 ! = 1 2 x + 1 2017 ! = 0.5 \large x=\frac { 3 }{ 1!+2!+3! } +\frac { 4 }{ 2!+3!+4! } +\frac { 5 }{ 3!+4!+5! } +...+\frac { 2017 }{ 2015!+2016!+2017! } \\ \large x=\frac { 1 }{ 2! } -\frac { 1 }{ 3! } +\frac { 1 }{ 3! } -\frac { 1 }{ 4! } +...+\frac { 1 }{ 2016! } -\frac { 1 }{ 2017! } \\ \large x=\frac { 1 }{ 2! } -\frac { 1 }{ 2017! } \\ \large x+\frac { 1 }{ 2017! } =\frac { 1 }{ 2! } -\frac { 1 }{ 2017! } +\frac { 1 }{ 2017! } \\ \large x+\frac { 1 }{ 2017! } =\frac { 1 }{ 2 } \\ \large x+\frac { 1 }{ 2017! } =0.5

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...