( 2 0 1 7 0 ) + ( 2 0 1 7 1 ) + ( 2 0 1 7 2 ) + . . . + ( 2 0 1 7 2 0 1 6 ) + ( 2 0 1 7 2 0 1 7 )
Find the units digit of the number above.
Notations:
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Problem Loading...
Note Loading...
Set Loading...
Based on
( a + b ) n = ( n 0 ) a n b 0 + ( n 1 ) a n − 1 b 1 + ( n 2 ) a n − 2 b 2 + . . . + ( n n − 1 ) a 1 b n − 1 + ( n n ) a 0 b n
( 1 + 1 ) 2 0 1 7 = ( 2 0 1 7 0 ) 1 2 0 1 7 1 0 + ( 2 0 1 7 1 ) 1 2 0 1 6 1 1 + ( 2 0 1 7 2 ) 1 2 0 1 5 1 2 + . . . + ( 2 0 1 7 2 0 1 6 ) 1 1 1 2 0 1 6 + ( 2 0 1 7 2 0 1 7 ) 1 0 1 2 0 1 7 2 2 0 1 7 = ( 2 0 1 7 0 ) + ( 2 0 1 7 1 ) + ( 2 0 1 7 2 ) + . . . + ( 2 0 1 7 2 0 1 6 ) + ( 2 0 1 7 2 0 1 7 )
Notice the pattern below.
2 1 ≡ 2 ( m o d 1 0 ) 2 2 ≡ 4 ( m o d 1 0 ) 2 3 ≡ 8 ( m o d 1 0 ) 2 4 ≡ 6 ( m o d 1 0 ) 2 5 ≡ 2 ( m o d 1 0 )
The pattern repeats after 4 patterns.
2 0 1 7 ≡ 1 ( m o d 4 ) .
Thus, the unit number of 2 2 0 1 7 equals the unit number of 2 1 , is 2 .