A number theory problem by Wildan Bagus Wicaksono

( 2017 0 ) + ( 2017 1 ) + ( 2017 2 ) + . . . + ( 2017 2016 ) + ( 2017 2017 ) \left( \begin{matrix} 2017 \\ 0 \end{matrix} \right) +\left( \begin{matrix} 2017 \\ 1 \end{matrix} \right) +\left( \begin{matrix} 2017 \\ 2 \end{matrix} \right) +...+\left( \begin{matrix} 2017 \\ 2016 \end{matrix} \right) +\left( \begin{matrix} 2017 \\ 2017 \end{matrix} \right)

Find the units digit of the number above.

Notations:

  • ( M N ) = M ! N ! ( M N ) ! \displaystyle {M \choose N} = \frac {M!}{N!(M-N)!} denotes the binomial coefficient .
  • ! ! denotes the factorial notation; for example: 8 ! = 1 × 2 × 3 × × 8 8! = 1\times 2 \times 3 \times \cdots \times 8 .


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Based on

( a + b ) n = ( n 0 ) a n b 0 + ( n 1 ) a n 1 b 1 + ( n 2 ) a n 2 b 2 + . . . + ( n n 1 ) a 1 b n 1 + ( n n ) a 0 b n { (a+b) }^{ n }=\left( \begin{matrix} n \\ 0 \end{matrix} \right) { a }^{ n }{ b }^{ 0 }+\left( \begin{matrix} n \\ 1 \end{matrix} \right) { a }^{ n-1 }{ b }^{ 1 }+\left( \begin{matrix} n \\ 2 \end{matrix} \right) { a }^{ n-2 }{ b }^{ 2 }+...+\left( \begin{matrix} n \\ n-1 \end{matrix} \right) { a }^{ 1 }{ b }^{ n-1 }+\left( \begin{matrix} n \\ n \end{matrix} \right) { a }^{ 0 }{ b }^{ n }

( 1 + 1 ) 2017 = ( 2017 0 ) 1 2017 1 0 + ( 2017 1 ) 1 2016 1 1 + ( 2017 2 ) 1 2015 1 2 + . . . + ( 2017 2016 ) 1 1 1 2016 + ( 2017 2017 ) 1 0 1 2017 2 2017 = ( 2017 0 ) + ( 2017 1 ) + ( 2017 2 ) + . . . + ( 2017 2016 ) + ( 2017 2017 ) { (1+1) }^{ 2017 }=\left( \begin{matrix} 2017 \\ 0 \end{matrix} \right) { 1 }^{ 2017 }{ 1 }^{ 0 }+\left( \begin{matrix} 2017 \\ 1 \end{matrix} \right) { 1 }^{ 2016 }{ 1 }^{ 1 }+\left( \begin{matrix} 2017 \\ 2 \end{matrix} \right) { 1 }^{ 2015 }{ 1 }^{ 2 }+...+\left( \begin{matrix} 2017 \\ 2016 \end{matrix} \right) { 1 }^{ 1 }{ 1 }^{ 2016 }+\left( \begin{matrix} 2017 \\ 2017 \end{matrix} \right) { 1 }^{ 0 }{ 1 }^{ 2017 }\\ { 2 }^{ 2017 }=\left( \begin{matrix} 2017 \\ 0 \end{matrix} \right) +\left( \begin{matrix} 2017 \\ 1 \end{matrix} \right) +\left( \begin{matrix} 2017 \\ 2 \end{matrix} \right) +...+\left( \begin{matrix} 2017 \\ 2016 \end{matrix} \right) +\left( \begin{matrix} 2017 \\ 2017 \end{matrix} \right)

Notice the pattern below.

2 1 2 ( m o d 10 ) 2 2 4 ( m o d 10 ) 2 3 8 ( m o d 10 ) 2 4 6 ( m o d 10 ) 2 5 2 ( m o d 10 ) { 2 }^{ 1 }\equiv 2(mod10)\\ { 2 }^{ 2 }\equiv 4(mod10)\\ { 2 }^{ 3 }\equiv 8(mod10)\\ { 2 }^{ 4 }\equiv 6(mod10)\\ { 2 }^{ 5 }\equiv 2(mod10)

The pattern repeats after 4 patterns.

2017 1 ( m o d 4 ) 2017 \equiv 1 (mod 4) .

Thus, the unit number of 2 2017 2 ^{2017} equals the unit number of 2 1 2 ^ 1 , is 2 2 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...