An algebra problem by Wildan Bagus Wicaksono

Algebra Level 3

Let f ( x ) f(x) be a fourth-degree polynomial. If f ( 1 ) = f ( 2 ) = f ( 3 ) = 0 f(1) = f(2) = f(3) = 0 , f ( 4 ) = 6 f(4) = 6 , and f ( 5 ) = 72 f(5) = 72 , what is the last digit of f ( 2010 ) f(2010) ?

5 3 1 2 4

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Uros Stojkovic
Jul 2, 2017

Since f ( 1 ) = 0 f(1)=0 , f ( 2 ) = 0 f(2)=0 and f ( 3 ) = 0 f(3)=0 , we can write given polynomial in form of f ( x ) = a ( x 1 ) ( x 2 ) ( x 3 ) ( x α 4 ) f(x)=a(x-1)(x-2)(x-3)(x-\alpha_{4}) , where α 4 \alpha_{4} is its fourth root and a a is a real coefficient.

Then, we have f ( 4 ) = a ( 4 1 ) ( 4 2 ) ( 4 3 ) ( 4 α 4 ) = 6 f(4)=a(4-1)(4-2)(4-3)(4-\alpha_{4})=6

6 a ( 4 α 4 ) = 6 \Rightarrow 6a(4-\alpha _{4})=6

a ( 4 α 4 ) = 1 \Rightarrow a(4-\alpha _{4})=1

a = 1 4 α 4 \Rightarrow a=\frac{1}{4-\alpha _{4}}

Next, we have f ( 5 ) = a ( 5 1 ) ( 5 2 ) ( 5 3 ) ( 5 α 4 ) = 72 f(5)=a(5-1)(5-2)(5-3)(5-\alpha_{4})=72

24 a ( 5 α 4 ) = 72 \Rightarrow 24a(5-\alpha _{4})=72

a ( 5 α 4 ) = 3 \Rightarrow a(5-\alpha _{4})=3

1 4 α 4 ( 5 α 4 ) = 3 \Rightarrow \frac{1}{4-\alpha _{4}}(5-\alpha _{4})=3

5 α 4 = 12 3 α 4 \Rightarrow 5-\alpha _{4}=12-3\alpha _{4}

2 α 4 = 7 α 4 = 7 2 \Rightarrow 2\alpha _{4}=7\Rightarrow \alpha _{4}=\frac{7}{2} .

Thus, a = 1 4 7 2 = 2 a=\frac{1}{4-\frac{7}{2}}=2 .

Now, we have general expression for this polynomial f ( x ) = 2 ( x 1 ) ( x 2 ) ( x 3 ) ( x 7 2 ) f(x)=2(x-1)(x-2)(x-3)(x-\frac{7}{2}) .

f ( 2010 ) = 2 ( 2010 1 ) ( 2010 2 ) ( 2010 3 ) ( 2010 7 2 ) f(2010)=2(2010-1)(2010-2)(2010-3)(2010-\frac{7}{2})

f ( 2010 ) = 2 × 2009 × 2008 × 2007 × 4013 2 = 2009 × 2008 × 2007 × 4013 f(2010)=2\times 2009\times 2008\times 2007\times \frac{4013}{2}=2009\times 2008\times 2007\times 4013

Last digit of this product will be the last digit of 9 × 8 × 7 × 3 9\times 8\times 7\times 3 , which is 2 \boxed{2} .

Let f ( x ) = a x 4 + b x 3 + c x 2 + d x + e f(x) = ax^4+bx^3+cx^2+dx+e . Then we have:

[ 1 1 1 1 1 16 8 4 2 1 81 27 9 3 1 256 64 16 4 1 625 125 25 5 1 ] [ a b c d e ] = [ 0 0 0 6 72 ] \begin{aligned} \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 16 & 8 & 4 & 2 & 1 \\ 81 & 27 & 9 & 3 & 1 \\ 256 & 64 & 16 & 4 & 1 \\ 625 & 125 & 25 & 5 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ d \\ e \end{bmatrix} & = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 6 \\ 72 \end{bmatrix} \end{aligned}

Since we need to find the last digit of f ( 2010 ) f(2010) , all terms with x x end with 0 and we need only to find e e . We can do that using Cramer's rule as follows:

Let A = [ 1 1 1 1 1 16 8 4 2 1 81 27 9 3 1 256 64 16 4 1 625 125 25 5 1 ] det ( A ) = 288 A = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 16 & 8 & 4 & 2 & 1 \\ 81 & 27 & 9 & 3 & 1 \\ 256 & 64 & 16 & 4 & 1 \\ 625 & 125 & 25 & 5 & 1 \end{bmatrix} \implies \det (A) = 288

Let A 5 = [ 1 1 1 1 0 16 8 4 2 0 81 27 9 3 0 256 64 16 4 6 625 125 25 5 72 ] det ( A 5 ) = 12096 A_5 = \begin{bmatrix} 1 & 1 & 1 & 1 & 0 \\ 16 & 8 & 4 & 2 & 0 \\ 81 & 27 & 9 & 3 & 0 \\ 256 & 64 & 16 & 4 & 6 \\ 625 & 125 & 25 & 5 & 72 \end{bmatrix} \implies \det (A_5) = 12096

Therefore, e = det ( A 5 ) det ( A ) = 12096 288 = 42 e = \dfrac {\det(A_5)}{\det(A)} = \dfrac {12096}{288} = 42 . \implies the last digit of f ( 2010 ) f(2010) is 2 \boxed{2} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...