Let f ( x ) be a fourth-degree polynomial. If f ( 1 ) = f ( 2 ) = f ( 3 ) = 0 , f ( 4 ) = 6 , and f ( 5 ) = 7 2 , what is the last digit of f ( 2 0 1 0 ) ?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Let f ( x ) = a x 4 + b x 3 + c x 2 + d x + e . Then we have:
⎣ ⎢ ⎢ ⎢ ⎢ ⎡ 1 1 6 8 1 2 5 6 6 2 5 1 8 2 7 6 4 1 2 5 1 4 9 1 6 2 5 1 2 3 4 5 1 1 1 1 1 ⎦ ⎥ ⎥ ⎥ ⎥ ⎤ ⎣ ⎢ ⎢ ⎢ ⎢ ⎡ a b c d e ⎦ ⎥ ⎥ ⎥ ⎥ ⎤ = ⎣ ⎢ ⎢ ⎢ ⎢ ⎡ 0 0 0 6 7 2 ⎦ ⎥ ⎥ ⎥ ⎥ ⎤
Since we need to find the last digit of f ( 2 0 1 0 ) , all terms with x end with 0 and we need only to find e . We can do that using Cramer's rule as follows:
Let A = ⎣ ⎢ ⎢ ⎢ ⎢ ⎡ 1 1 6 8 1 2 5 6 6 2 5 1 8 2 7 6 4 1 2 5 1 4 9 1 6 2 5 1 2 3 4 5 1 1 1 1 1 ⎦ ⎥ ⎥ ⎥ ⎥ ⎤ ⟹ det ( A ) = 2 8 8
Let A 5 = ⎣ ⎢ ⎢ ⎢ ⎢ ⎡ 1 1 6 8 1 2 5 6 6 2 5 1 8 2 7 6 4 1 2 5 1 4 9 1 6 2 5 1 2 3 4 5 0 0 0 6 7 2 ⎦ ⎥ ⎥ ⎥ ⎥ ⎤ ⟹ det ( A 5 ) = 1 2 0 9 6
Therefore, e = det ( A ) det ( A 5 ) = 2 8 8 1 2 0 9 6 = 4 2 . ⟹ the last digit of f ( 2 0 1 0 ) is 2 .
Problem Loading...
Note Loading...
Set Loading...
Since f ( 1 ) = 0 , f ( 2 ) = 0 and f ( 3 ) = 0 , we can write given polynomial in form of f ( x ) = a ( x − 1 ) ( x − 2 ) ( x − 3 ) ( x − α 4 ) , where α 4 is its fourth root and a is a real coefficient.
Then, we have f ( 4 ) = a ( 4 − 1 ) ( 4 − 2 ) ( 4 − 3 ) ( 4 − α 4 ) = 6
⇒ 6 a ( 4 − α 4 ) = 6
⇒ a ( 4 − α 4 ) = 1
⇒ a = 4 − α 4 1
Next, we have f ( 5 ) = a ( 5 − 1 ) ( 5 − 2 ) ( 5 − 3 ) ( 5 − α 4 ) = 7 2
⇒ 2 4 a ( 5 − α 4 ) = 7 2
⇒ a ( 5 − α 4 ) = 3
⇒ 4 − α 4 1 ( 5 − α 4 ) = 3
⇒ 5 − α 4 = 1 2 − 3 α 4
⇒ 2 α 4 = 7 ⇒ α 4 = 2 7 .
Thus, a = 4 − 2 7 1 = 2 .
Now, we have general expression for this polynomial f ( x ) = 2 ( x − 1 ) ( x − 2 ) ( x − 3 ) ( x − 2 7 ) .
f ( 2 0 1 0 ) = 2 ( 2 0 1 0 − 1 ) ( 2 0 1 0 − 2 ) ( 2 0 1 0 − 3 ) ( 2 0 1 0 − 2 7 )
f ( 2 0 1 0 ) = 2 × 2 0 0 9 × 2 0 0 8 × 2 0 0 7 × 2 4 0 1 3 = 2 0 0 9 × 2 0 0 8 × 2 0 0 7 × 4 0 1 3
Last digit of this product will be the last digit of 9 × 8 × 7 × 3 , which is 2 .