An algebra problem by Wildan Bagus Wicaksono

Algebra Level 3

Find the smallest positive integer n n with n > 2017 n > 2017 so that

1 3 + 2 3 + 3 3 + . . . + n 3 n \sqrt { \frac { { 1 }^{ 3 }+{ 2 }^{ 3 }+{ 3 }^{ 3 }+...+{ n }^{ 3 } }{ n } }

is an integer.

2019 2027 2021 2023 2025

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Marta Reece
Jul 3, 2017

Sum of third powers: 1 3 + 2 3 + 3 3 + . . . + n 3 = ( n ( n + 1 ) 2 ) 2 1^3+2^3+3^3+...+n^3=\left(\dfrac {n(n+1)}2\right)^2

1 3 + 2 3 + 3 3 + . . . + n 3 n = n × n + 1 2 \sqrt{\dfrac{1^3+2^3+3^3+...+n^3}n}=\sqrt n\times\frac{n+1}2

2017 44.91 \sqrt{2017}\approx44.91

The nearest number above that is 45 45 , which happens to be odd, so that n + 1 2 \frac{n+1}2 is an integer.

So the answer is 4 5 2 = 2025 45^2=\boxed{2025}

Zach Abueg
Jul 3, 2017

m = 1 3 + 2 3 + 3 3 + + n 3 n Recall the identity k = 1 n k 3 = ( k = 1 n k ) 2 = ( 1 + 2 + 3 + + n ) 2 n = ( 1 + 2 + 3 + + n ) 1 n = n ( n + 1 ) 2 n \displaystyle \begin{aligned} m & = \sqrt{\frac{1^3 + 2^3 + 3^3 + \cdots + n^3}{n}} & \small \color{#3D99F6} \text{Recall the identity} \ \sum_{k \ = \ 1}^{n} k^3 = \left(\sum_{k \ = \ 1}^{n} k\right)^2 \\ & = \sqrt{\frac{\left(1 + 2 + 3 + \cdots + n\right)^2}{n}} \\ & = \left(1 + 2 + 3 + \cdots + n\right) \cdot \frac{1}{\sqrt{n}} \\ & = \frac{n(n + 1)}{2\sqrt{n}} \end{aligned}

Observe that if n n is a square, then n n \sqrt{n} \mid n , so it follows that n n ( n + 1 ) \sqrt{n} \mid n(n + 1) . Also notice that 2 n ( n + 1 ) n N 2 \mid n(n + 1) \ \forall \ n \in \mathbb{N} : this can be easily proven by induction.

Thus, n ( n + 1 ) 2 n Z + n Z + \displaystyle \frac{n(n + 1)}{2\sqrt{n}} \in \mathbb{Z}^+ \iff \sqrt{n} \in \mathbb{Z}^+ .

We can bound the squares > 2017 > 2017 to 1600 = 4 0 2 < n 2 < 5 0 2 = 2500 1600 = 40^2 < n^2 < 50^2 = 2500 . With trial and error, we find that the smallest square > 2017 > 2017 is 4 5 2 = 2025 45^2 = \boxed{2025} .

N = 1 3 + 2 3 + 3 3 + + n 3 n Note that k = 1 n k 3 = ( n ( n + 1 ) 2 ) 2 = n 2 ( n + 1 ) 2 4 n = n ( n + 1 ) 2 \begin{aligned} N & = \sqrt{\frac {\color{#3D99F6}1^3+2^3+3^3+\cdots +n^3}n} & \small \color{#3D99F6} \text{Note that }\sum_{k=1}^n k^3 = \left(\frac {n(n+1)}2 \right)^2 \\ & = \sqrt{\frac {\color{#3D99F6}n^2(n+1)^2}{{\color{#3D99F6}4}n}} \\ & = \frac {\sqrt n(n+1)}2 \end{aligned}

For N N to be an integer, n n must be a perfect square. And the smallest perfect square n > 2017 n > 2017 is given by n = 2017 2 n = \left \lceil \sqrt{2017} \right \rceil ^2 = 44.911 2 = \left \lceil 44.911 \right \rceil ^2 = 4 5 2 = 45^2 = 2025 = \boxed{2025} . Then N = 45 2026 2 = 45585 N = \dfrac {45\cdot 2026}2 = 45585 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...