A number theory problem by Wildan Bagus Wicaksono

If n = 201 7 2 + 201 8 2 n = 2017^2 + 2018^2 , determine 2 n 1 \sqrt { 2n-1 } .

4034 4037 4033 4036 4035

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Zach Abueg
Jul 3, 2017

Let n = x 2 + ( x + 1 ) 2 n = x^2 + (x + 1)^2 .

x 2 + ( x + 1 ) 2 = 2 x 2 + 2 x + 1 2 n 1 = 2 ( 2 x 2 + 2 x + 1 ) 1 = 4 x 2 + 4 x + 1 = 2 x + 1 \displaystyle \begin{aligned} x^2 + (x + 1)^2 & = 2x^2 + 2x + 1 \\ \implies \sqrt{2n - 1} & = \sqrt{2\left(2x^2 + 2x + 1\right) - 1} \\ & = \sqrt{4x^2 + 4x + 1} \\ & = 2x + 1 \end{aligned}

For x = 2017 x = 2017 , 2 x + 1 = 4035 2x + 1 = \boxed{4035} .

n = 201 7 2 + 201 8 2 n = 2017^2 + 2018^2

n = 201 7 2 + ( 2017 + 1 ) 2 n = 2017^2 + (2017 + 1)^2

n = 201 7 2 + 201 7 2 + 2 ( 2017 ) + 1 2 n = 2017^2 + 2017^2 + 2(2017) + 1^2

n = 2 ( 201 7 2 ) + 2 ( 2017 ) + 1 n = 2(2017^2) + 2(2017) + 1

Then

2 n 1 = 4 ( 201 7 2 ) + 4 ( 2017 ) + 2 1 2n - 1 = 4(2017^2) + 4(2017) + 2 - 1

2 n 1 = 4 ( 201 7 2 ) + 4 ( 2017 ) + 1 2n - 1 = 4(2017^2) + 4(2017) + 1

2 n 1 = [ 2 ( 2017 ) + 1 ] 2 2n - 1 = [2(2017) + 1]^2

So,

2 n 1 = ( 2 ( 2017 ) + 1 ) 2 = 2 ( 2017 ) + 1 = 4034 + 1 = 4035 \sqrt { 2n-1 } = \sqrt { { (2(2017)+1) }^{ 2 } } = 2(2017) + 1 = 4034 + 1 = 4035 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...