Matrices Do Commute

A B = B A = [ 54 37 37 17 ] AB = BA = \begin{bmatrix} 54 & 37 \\ 37 & 17 \end{bmatrix}

Let A A & B B be the symmetrical matrices, satisfying the equation above, such that every element in both matrices is a positive integer from 1 1 to 9 9 , but both matrices do not share any element in common.

Compute det ( A + B ) |\det(A+B)| .


The answer is 29.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Both A A & B B are symmetrical. Let us denote them as the following with positive integers a a to f f : A = [ a b b c ] A = \begin{bmatrix} a & b \\ b & c \end{bmatrix}

B = [ d e e f ] B = \begin{bmatrix} d & e \\ e & f \end{bmatrix}

Therefore, A B = B A = [ a d + b e a e + b f b d + c e b e + c f ] AB = BA = \begin{bmatrix} ad+be & ae+bf \\ bd+ce & be+cf \end{bmatrix}

Thus, we can set up system of equations as:

( a d + b e ) ( b e + c f ) = a d c f = 54 17 = 37 (ad+be)-(be+cf) = ad - cf = 54-17 = 37

a e + b f = b d + c e = 37 ae+bf = bd+ce = 37 or e ( a c ) = b ( d f ) e(a-c) = b(d-f)

Given that all the elements are positive integers, each determinant will also be an integer, and we can apply the product determinant rule:

det ( A B ) = det ( A ) det ( B ) = 54 17 3 7 2 = 451 = 41 × 11 = 11 × 41 \det(AB) = \det(A) \cdot \det(B) = 54\cdot 17 - 37^2 = -451 = -41\times 11 = -11\times 41

Neither A A nor B B can not have a determinant exceeding 9 2 1 2 = 80 9^2 - 1^2 = 80 , so the determinant value of 451 451 is not possible. Then, for generality, there are two possible scenarios for A A : det ( A ) = 41 \det(A) = 41 or det ( A ) = 41 \det(A) = -41 Considering the former case, 41 = a c b 2 41 = ac - b^2 .

Then b 2 = a c 41 b^2 = ac - 41 . By a c ac must exceed 41 41 , the selection of digits can start from 6 7 = 42 6\cdot 7 = 42 .

By continuing the higher digit multiplication, there are only two applicable products:

1 2 = 6 7 41 1^2 = 6\cdot 7 - 41 , which leads to two possible matrices: A = [ 7 1 1 6 ] A = \begin{bmatrix} 7 & 1 \\ 1 & 6 \end{bmatrix} or
A = [ 6 1 1 7 ] A = \begin{bmatrix} 6 & 1 \\ 1 & 7 \end{bmatrix}

2 2 = 5 9 41 2^2 = 5\cdot 9 - 41 , which leads to two possible matrices: A = [ 9 2 2 5 ] A = \begin{bmatrix} 9 & 2 \\ 2 & 5 \end{bmatrix} or
A = [ 5 2 2 9 ] A = \begin{bmatrix} 5 & 2 \\ 2 & 9 \end{bmatrix}

Now we plug in the values for the equation a d c f = 37 ad - cf = 37 and e ( a c ) = b ( d f ) e(a-c) = b(d-f)

For ( a , b , c ) = ( 7 , 1 , 6 ) (a, b, c) = (7,1,6) , 7 d 6 f = 37 7d-6f = 37 . f = 7 d 37 6 f= \dfrac{7d-37}{6} . Only d = 7 d=7 results in f = 2 f=2 , but a = 7 a=7 . The matrices can't share the element, according to the question.

For ( a , b , c ) = ( 6 , 1 , 7 ) (a, b, c) = (6,1,7) , 6 d 7 f = 37 6d-7f = 37 . f = 6 d 37 7 f= \dfrac{6d-37}{7} . No digit for d d can result in a digit for f f .

For ( a , b , c ) = ( 9 , 2 , 5 ) (a, b, c) = (9,2,5) , 9 d 5 f = 37 9d-5f = 37 . f = 9 d 37 5 f= \dfrac{9d-37}{5} . Only d = 8 d=8 results in f = 7 f=7 , but a = 7 a=7 . The matrices can't share the element, according to the question.

For ( a , b , c ) = ( 5 , 2 , 9 ) (a, b, c) = (5,2,9) , 5 d 9 f = 37 5d-9f = 37 . f = 5 d 37 9 f= \dfrac{5d-37}{9} . No digit for d d can result in a digit for f f .

Thus, det ( A ) = 41 \det(A) = -41 and det ( B ) = 11 \det(B) = 11

Then b 2 = a c + 41 b^2 = ac + 41 . The only squares exceeding 41 41 are 7 2 7^2 , 8 2 8^2 , and 9 2 9^2 .

If b = 7 b=7 , then a c = 49 41 = 8 = 1 8 = 2 4 ac = 49 - 41 = 8 = 1\cdot 8 = 2\cdot 4 .

If b = 8 b=8 , then a c = 64 41 = 23 ac = 64 - 41 = 23 . No digit multiplication can apply.

If b = 9 b=9 , then a c = 81 41 = 40 = 5 8 = 8 5 ac = 81 - 41 = 40 = 5\cdot 8 = 8\cdot 5 .

Therefore, there are six possible matrices:

A = [ 1 7 7 8 ] A = \begin{bmatrix} 1 & 7 \\ 7 & 8 \end{bmatrix} , for this case d 8 f = 37 d-8f = 37 . d 37 = 8 f d-37 = 8f . No digit d d can make f f positive, so it's not the solution. A = [ 8 7 7 1 ] A = \begin{bmatrix} 8 & 7 \\ 7 & 1 \end{bmatrix} , for this case 8 d f = 37 8d-f = 37 . f = 8 d 37 f = 8d-37 . Only d = 5 d=5 results in f = 3 f=3 . Then e ( a c ) = b ( d f ) e(a-c) = b(d-f) . e ( 8 1 ) = 7 ( 5 3 ) e(8-1) = 7(5-3) . e = 2 e=2 . This seems to work out for all constraints, but let us check the other possibilities first.

A = [ 2 7 7 4 ] A = \begin{bmatrix} 2 & 7 \\ 7 & 4 \end{bmatrix} , for this case, e ( 2 4 ) = 7 ( d f ) e(2-4) = 7(d-f) . That means 7 e 7|e or e = 7 e=7 , but but b = 7 b=7 . The matrices can't share the element, according to the question.

A = [ 4 7 7 2 ] A = \begin{bmatrix} 4 & 7 \\ 7 & 2 \end{bmatrix} , for this case, e ( 4 2 ) = 7 ( d f ) e(4-2) = 7(d-f) . That means 7 e 7|e or e = 7 e=7 , but but b = 7 b=7 . The matrices can't share the element, according to the question.

A = [ 8 9 9 5 ] A = \begin{bmatrix} 8 & 9 \\ 9 & 5 \end{bmatrix} , for this case, 8 d 5 f = 37 8d-5f = 37 . f = 8 d 37 5 f= \dfrac{8d-37}{5} . Only d = 9 d=9 results in f = 7 f=7 , but b = 9 b=9 . The matrices can't share the element, according to the question.

A = [ 5 9 9 8 ] A = \begin{bmatrix} 5 & 9 \\ 9 & 8 \end{bmatrix} , for this case, 5 d 8 f = 37 5d-8f = 37 . f = 5 d 37 8 f= \dfrac{5d-37}{8} . Only d = 9 d=9 results in f = 1 f=1 , but b = 9 b=9 . The matrices can't share the element, according to the question.

Finally, A = [ 8 7 7 1 ] A = \begin{bmatrix} 8 & 7 \\ 7 & 1 \end{bmatrix} , and B = [ 5 2 2 3 ] B = \begin{bmatrix} 5 & 2 \\ 2 & 3 \end{bmatrix}

Checking the multiplication:

A B = B A = [ 8 7 7 1 ] [ 5 2 2 3 ] = [ 5 2 2 3 ] [ 8 7 7 1 ] = [ 54 37 37 17 ] AB=BA=\begin{bmatrix} 8 & 7 \\ 7 & 1 \end{bmatrix} \begin{bmatrix} 5 & 2 \\ 2 & 3 \end{bmatrix} = \begin{bmatrix} 5 & 2 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} 8 & 7 \\ 7 & 1 \end{bmatrix} = \begin{bmatrix} 54 & 37 \\ 37 & 17 \end{bmatrix}

Thus, A + B = [ 13 9 9 4 ] A+B = \begin{bmatrix} 13 & 9 \\ 9 & 4 \end{bmatrix}

Therefore, det ( A + B ) = 13 4 9 2 = 29 |\det(A+B)| = |13\cdot 4 - 9^2| = \boxed{29} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...