A one-sided limit

Calculus Level 3

Find

lim t π 2 d d t 1 2 1 2 sin t \large \lim_{t \to \frac{\pi}{2}^- } \dfrac{d}{dt} \sqrt{ \frac{1}{2} - \frac{1}{2} \sin t }

Note: t t is approaching π 2 \frac{\pi}{2} from the left.


The answer is -0.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chris Lewis
Aug 17, 2020

Let u = π 2 t u=\frac{\pi}{2}-t . We want the limit as u 0 + u \to 0^+ .

Then 1 2 1 2 sin t = 1 2 1 2 cos u 1 2 1 2 ( 1 1 2 u 2 ) (small angle approximation for cosine) = 1 4 u 2 = 1 2 u = π 4 1 2 t \begin{aligned} \sqrt{\frac12-\frac12 \sin t} &= \sqrt{\frac12-\frac12 \cos u}\\ & \approx \sqrt{\frac12-\frac12 \left(1-\frac12 u^2 \right)} \;\;\;\text{(small angle approximation for cosine)} \\ &=\sqrt{\frac14 u^2} \\ &=\frac12 u \\ &=\frac{\pi}{4}-\frac12 t \end{aligned}

Differentiating, we want the limit as t π 2 t \to \frac{\pi}{2}^- of 1 2 -\frac12 , which is just 1 2 \boxed{-\frac12} .

Chew-Seong Cheong
Aug 18, 2020

L = lim t π 2 d d t 1 2 1 2 sin t = lim t π 2 cos t 4 1 2 1 2 sin t = lim t π 2 1 sin 2 t 2 2 1 sin t Note that lim t π 2 cos t > 0 = lim t π 2 1 + sin t 2 2 = 1 2 = 0.5 \begin{aligned} L & = \lim_{t \to \frac \pi 2^-} \frac d{dt} \sqrt{\frac 12 - \frac 12 \sin t} \\ & = \lim_{t \to \frac \pi 2^-} \frac {-\cos t}{4\sqrt{\frac 12 - \frac 12 \sin t}} \\ & = \lim_{t \to \frac \pi 2^-} \frac {-\sqrt{1-\sin^2 t}}{2\sqrt 2 \sqrt{1-\sin t}} & \small \blue{\text{Note that }\lim_{t \to \frac \pi 2^-} \cos t > 0} \\ & = \lim_{t \to \frac \pi 2^-} \frac {-\sqrt{1+\sin t}}{2\sqrt 2} \\ & = - \frac 12 = \boxed{-0.5} \end{aligned}

Saúl Huerta
Aug 18, 2020

d d t 1 2 1 2 sin t = 2 4 ( cos t 1 sin t ) \frac{d}{dt} \sqrt{\frac{1}{2}-\frac{1}{2}\sin t}=-\frac{\sqrt{2}}{4}\left(\frac{\cos t}{\sqrt{1-\sin t}}\right) cos t 1 sin t = cos t 1 sin t 1 + sin t 1 + sin t = cos t 1 + sin t 1 sin 2 t = cos t 1 + sin t cos 2 t = 1 + sin t \frac{\cos t}{\sqrt{1-\sin t}}=\frac{\cos t}{\sqrt{1-\sin t}}\cdot\frac{\sqrt{1+\sin t}}{\sqrt{1+\sin t}}=\frac{\cos t \cdot \sqrt{1+\sin t}}{\sqrt{1-\sin^2 t}}=\frac{\cos t \cdot \sqrt{1+\sin t}}{\sqrt{\cos^2 t}}=\sqrt{1+\sin t} lim t π 2 d d t 1 2 1 2 sin t \implies\lim_{t\rightarrow\frac{\pi}{2}^{-}}\frac{d}{dt} \sqrt{\frac{1}{2}-\frac{1}{2}\sin t} = lim t π 2 2 4 1 + sin t =\lim_{t\rightarrow\frac{\pi}{2}^{-}} -\frac{\sqrt{2}}{4}\sqrt{1+\sin t} = 1 2 =\boxed{-\frac{1}{2}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...