Find
t → 2 π − lim d t d 2 1 − 2 1 sin t
Note: t is approaching 2 π from the left.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
L = t → 2 π − lim d t d 2 1 − 2 1 sin t = t → 2 π − lim 4 2 1 − 2 1 sin t − cos t = t → 2 π − lim 2 2 1 − sin t − 1 − sin 2 t = t → 2 π − lim 2 2 − 1 + sin t = − 2 1 = − 0 . 5 Note that t → 2 π − lim cos t > 0
d t d 2 1 − 2 1 sin t = − 4 2 ( 1 − sin t cos t ) 1 − sin t cos t = 1 − sin t cos t ⋅ 1 + sin t 1 + sin t = 1 − sin 2 t cos t ⋅ 1 + sin t = cos 2 t cos t ⋅ 1 + sin t = 1 + sin t ⟹ t → 2 π − lim d t d 2 1 − 2 1 sin t = t → 2 π − lim − 4 2 1 + sin t = − 2 1
Problem Loading...
Note Loading...
Set Loading...
Let u = 2 π − t . We want the limit as u → 0 + .
Then 2 1 − 2 1 sin t = 2 1 − 2 1 cos u ≈ 2 1 − 2 1 ( 1 − 2 1 u 2 ) (small angle approximation for cosine) = 4 1 u 2 = 2 1 u = 4 π − 2 1 t
Differentiating, we want the limit as t → 2 π − of − 2 1 , which is just − 2 1 .