A pair of conjugate semi-diameters of an ellipse

Geometry Level pending

Consider the ellipse described by

r ( t ) = C + f 1 cos t + f 2 sin t \mathbf{r}(t) = \mathbf{C} + \mathbf{f_1} \cos t + \mathbf{f_2} \sin t

The vectors f 1 , f 2 \mathbf{f_1} , \mathbf{f_2} can be shown to be conjugate semi-diameters of this ellipse. In this problem, we want to find another pair of vectors g 1 , g 2 \mathbf{g_1}, \mathbf{g_2} such that the same ellipse can be re-parameterized as,

r ( s ) = C + g 1 cos s + g 2 sin s \mathbf{r}(s) = \mathbf{C} + \mathbf{g_1} \cos s + \mathbf{g_2} \sin s

For this purpose, suppose we choose g 1 = cos θ f 1 + sin θ f 2 \mathbf{g_1} = \cos \theta \mathbf{f_1} + \sin \theta \mathbf{f_2} , for some θ \theta , then what must g 2 \mathbf{g_2} be ?

± sin θ f 1 ± cos θ f 2 \pm \sin \theta \mathbf{f_1} \pm \cos \theta \mathbf{f_2} ± cos θ f 1 ± sin θ f 2 \pm \cos \theta \mathbf{f_1} \pm \sin \theta \mathbf{f_2} cos θ f 1 ± sin θ f 2 \mp \cos \theta \mathbf{f_1} \pm \sin \theta \mathbf{f_2} sin θ f 1 ± cos θ f 2 \mp \sin \theta \mathbf{f_1} \pm \cos \theta \mathbf{f_2}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

0 solutions

No explanations have been posted yet. Check back later!

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...