A parabola with a twist

Calculus Level 5

The parabola y = a x 2 y = a x^2 with a = 1 16 a = \dfrac{1}{16} , is given a twist of π 5 \dfrac{\pi}{5} clockwise, then it is translated such that it becomes tangent to the x x and y y axes, in the first quadrant, as shown below. Find the area bounded by the x x -axis , the y y -axis, and the parabola (shaded in light blue).


The answer is 24.8.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Joseph Newton
Mar 8, 2019

Instead of finding a formula for the rotated parabola, we can just rotate the x and y axes instead.

One of the axes when rotated by π 5 \frac\pi5 will have a slope of tan π 5 \tan\frac\pi5 (it doesn't matter whether this is positive or negative as the parabola is symmetrical). For simplicity, let this be the constant t = tan π 5 t=\tan\frac\pi5 . The other axis, which is perpendicular, will have a slope of 1 t -\frac1t .

Now we need to find the lines with these slopes that are tangent to the parabola. To do this, we will differentiate the parabola to get y = x 8 y'=\frac x8 , and substitute in the required slopes:

t = x 1 8 1 t = x 2 8 x 1 = 8 t x 2 = 8 t y 1 = ( 8 t ) 2 16 = 4 t 2 y 2 = ( 8 t ) 2 16 = 4 t 2 y y 1 = m ( x x 1 ) y y 2 = m ( x x 2 ) y 4 t 2 = t ( x 8 t ) y 4 t 2 = 1 t ( x + 8 t ) y 4 t 2 = t x 8 t 2 y 4 t 2 = 1 t x 8 t 2 y = t x 4 t 2 y = x t 4 t 2 \begin{aligned}t&=\frac{x_1}8&-\frac1t&=\frac{x_2}8\\ x_1&=8t&x_2&=-\frac8t\\ y_1&=\frac{(8t)^2}{16}=4t^2&y_2&=\frac{\left(-\frac8t\right)^2}{16}=\frac4{t^2}\\\\ y-y_1&=m(x-x_1)&y-y_2&=m(x-x_2)\\ y-4t^2&=t(x-8t)&y-\frac4{t^2}&=-\frac1t\left(x+\frac8t\right)\\ y-4t^2&=tx-8t^2&y-\frac4{t^2}&=-\frac1tx-\frac8{t^2}\\ y&=tx-4t^2&y&=-\frac xt-\frac4{t^2}\end{aligned}

We already know that these lines intersect the parabola at x 1 = 8 t x_1=8t and x 2 = 8 t x_2=-\frac8t respectively. Lastly, we need their intersection point:

t x 4 t 2 = x t 4 t 2 x t + x t = 4 t 2 4 t 2 x ( t + 1 t ) = 4 ( t + 1 t ) ( t 1 t ) x = 4 ( t 1 t ) \begin{aligned}tx-4t^2&=-\frac xt-\frac4{t^2}\\ xt+\frac xt&=4t^2-\frac4{t^2}\\ x\left(t+\frac1t\right)&=4\left(t+\frac1t\right)\left(t-\frac1t\right)\\ x&=4\left(t-\frac1t\right)\end{aligned}

Now we can use these x-coordinates as the terminals to integrals between the parabola and the lines to find the total area:

Area = 8 t 4 ( t 1 t ) x 2 16 ( x t 4 t 2 ) d x + 4 ( t 1 t ) 8 t x 2 16 ( t x 4 t 2 ) d x \text{Area}=\int_{-\frac8t}^{4\left(t-\frac1t\right)} \frac{x^2}{16}-\left(-\frac xt-\frac4{t^2}\right)dx+\int_{4\left(t-\frac1t\right)}^{8t} \frac{x^2}{16}-\left(tx-4t^2\right)dx

Evaluating these integrals gives Area 24.8 \text{Area}\approx\boxed{24.8} .

Chew-Seong Cheong
Mar 15, 2019

Retaining the original x x - and y y -axes of the parabola y = a x 2 y=ax^2 , the graphs are as shown above. Instead of the parabola tilts π 5 \frac \pi 5 clockwise, it is equivalent to the new x x' -axis (orange line) tilts π 5 \frac \pi 5 anticlockwise. Instead of the parabola translates up and to the right, the x x' -axis translates down and to the left until it is tangent to the parabola.

Therefore, x x' -axis has a gradient of cot π 5 -\cot \frac \pi 5 and so is the point on the parabola it is tangent to. Since the gradient of the parabola is d y d x = 2 a x = x 8 = cot π 5 \dfrac {dy}{dx} = 2ax = \dfrac x8 = - \cot \frac \pi 5 , x = 8 cot π 5 \implies x = - 8\cot \frac \pi 5 and y = a x 2 = 4 cot 2 π 5 y = ax^2 = 4\cot^2 \frac \pi 5 . Therefore, the point of tangent is ( 8 cot π 5 , 4 cot 2 π 5 ) \left(-8\cot \frac \pi 5, 4 \cot^2 \frac \pi 5\right) . From y 4 cot 2 π 5 x + 8 cot π 5 = cot π 5 \dfrac {y-4\cot^2 \frac \pi5}{x+8\cot \frac \pi5} = - \cot \frac \pi 5 , the equation of x x' -axis is y = x cot π 5 4 cot 2 π 5 y = - x\cot \frac \pi 5 - 4\cot^2 \frac \pi 5 .

The y y' -axis (grey line) is perpendicular to x x' -axis, hence it has a gradient of tan π 5 \tan \frac \pi 5 . The point of tangent is ( 8 tan π 5 , 4 tan 2 π 5 ) \left(8\tan \frac \pi 5, 4 \tan^2 \frac \pi 5\right) and the equation of y y' -axis is y = x tan π 5 4 tan 2 π 5 y = x\tan \frac \pi 5 - 4\tan^2 \frac \pi 5 .

From x cot π 5 4 cot 2 π 5 = x tan π 5 4 tan 2 π 5 - x\cot \frac \pi 5 - 4\cot^2 \frac \pi 5 = x\tan \frac \pi 5 - 4\tan^2 \frac \pi 5 , we find that x x' -axis and y y' -axis intersect at x = 4 ( tan π 5 cot π 5 ) x=4\left(\tan \frac \pi 5 - \cot \frac \pi 5\right) .

Then the area bounded by the parabola, x x' -axis, and y y' -axis is given by:

A = 4 ( tan π 5 cot π 5 ) 8 tan π 5 ( a x 2 ( x tan π 5 4 tan 2 π 5 ) ) d x + 8 cot π 5 4 ( tan π 5 cot π 5 ) ( a x 2 ( x cot π 5 4 cot 2 π 5 ) ) d x = 8 cot π 5 8 tan π 5 x 2 16 d x 4 ( tan π 5 cot π 5 ) 8 tan π 5 ( x tan π 5 4 tan 2 π 5 ) d x + 8 cot π 5 4 ( tan π 5 cot π 5 ) ( x cot π 5 + 4 cot 2 π 5 ) d x = x 3 48 8 cot π 5 8 tan π 5 [ x 2 2 tan π 5 4 x tan 2 π 5 ] 4 ( tan π 5 cot π 5 ) 8 tan π 5 + [ x 2 2 cot π 5 + 4 x cot 2 π 5 ] 8 cot π 5 4 ( tan π 5 cot π 5 ) 24.799 \begin{aligned} A & = \int_{4\left(\tan \frac \pi 5 - \cot \frac \pi 5\right)}^{8\tan \frac \pi 5} \left(ax^2 - \left(x\tan \frac \pi 5 - 4\tan^2 \frac \pi 5\right)\right) dx + \int^{4\left(\tan \frac \pi 5 - \cot \frac \pi 5\right)}_{-8\cot \frac \pi 5} \left(ax^2 - \left(-x\cot \frac \pi 5 - 4\cot^2 \frac \pi 5\right)\right) dx \\ & = \int_{-8\cot \frac \pi5}^{8\tan \frac \pi 5} \frac {x^2}{16} dx - \int_{4\left(\tan \frac \pi 5 - \cot \frac \pi 5\right)}^{8\tan \frac \pi 5} \left(x\tan \frac \pi 5 - 4\tan^2 \frac \pi 5\right) dx + \int^{4\left(\tan \frac \pi 5 - \cot \frac \pi 5\right)}_{-8\cot \frac \pi 5} \left(x\cot \frac \pi 5 + 4\cot^2 \frac \pi 5\right) dx \\ & = \frac {x^3}{48} \bigg|_{-8\cot \frac \pi5}^{8\tan \frac \pi 5} - \left[\frac {x^2}2 \tan \frac \pi 5 - 4x\tan^2 \frac \pi 5\right]_{4\left(\tan \frac \pi 5 - \cot \frac \pi 5\right)}^{8\tan \frac \pi 5} + \left[\frac {x^2}2 \cot \frac \pi 5 + 4x\cot^2 \frac \pi 5\right]^{4\left(\tan \frac \pi 5 - \cot \frac \pi 5\right)}_{-8\cot \frac \pi 5} \\ & \approx \boxed{24.799} \end{aligned}

Hosam Hajjir
Mar 11, 2019

The parametric equation of the parabola is,

r ( t ) = d + R [ t , a t 2 ] T ( 1 ) \mathbf{r}(t) = \mathbf{d} + \mathbf{R} [t, a t^2]^T \hspace{12pt} (1)

where

R = R ( θ ) = [ cos θ sin θ sin θ cos θ ] ( 2 ) \mathbf{R} = \mathbf{R}(\theta) = \begin{bmatrix} \cos \theta && -\sin \theta \\ \sin \theta && \cos \theta \end{bmatrix} \hspace{12pt} (2)

(our angle of rotation θ = π 5 \theta = -\dfrac{\pi}{5} ) and d = [ d x , d y ] T \mathbf{d}=[d_x, d_y]^T is the coordinate vector of the vertex. The parameter is t R t \in \mathbb{R} .

The tangent to the parabola is obtained by differentiating r ( t ) \mathbf{r}(t) with respect to t t ,

r ( t ) = R [ 1 , 2 a t ] T ( 3 ) \mathbf{r'}(t) = \mathbf{R} [1, 2 a t]^T \hspace{12pt} (3)

Expanding the right hand side of (3), yields,

r ( t ) = [ c 2 a t s , s + 2 a t c ] T ( 4 ) \mathbf{r'}(t) = [ c - 2a t s , s + 2a t c ]^T \hspace{12pt} (4)

where c = cos θ c = \cos \theta , and s = sin θ s = \sin \theta .

Setting the y-coordinate of r ( t ) \mathbf{r'}(t) to 0 (horizontal tangent), yields

t 1 = 1 2 a tan θ > 0 ( 5 ) t_1 = - \dfrac{1}{2a} \tan \theta \gt 0 \hspace{12pt} (5) ,

and setting the x-coordinate of r ( t ) \mathbf{r'}(t) to 0 (vertical tangent), yields

t 2 = 1 2 a cot θ < 0 ( 6 ) t_2 = \dfrac{1}{2a} \cot \theta \lt 0 \hspace{12pt} (6)

Further, at t 1 t_1 , the y-coordinate is zero, so

d y + [ 0 , 1 ] R [ t 1 , a t 1 2 ] T = 0 ( 7 ) d_y + [0, 1] \mathbf{R} [t_1, at_1^2]^T = 0 \hspace{12pt} (7)

and at t 2 t_2 , the x-coordinate is zero, so that,

d x + [ 1 , 0 ] R [ t 2 , a t 2 2 ] T = 0 ( 8 ) d_x + [1, 0] \mathbf{R} [t_2 , at_2^2]^T = 0 \hspace{12pt} (8)

hence, we have found the vertex d \mathbf{d} . (You can check that d x = 4.454065458 d_x = 4.454065458 ,and d y = 1.70820393 d_y =1.70820393 )

The area bounded by a parametric curve p ( t ) = [ x ( t ) , y ( t ) ] T \mathbf{p}(t) = [x(t), y(t)]^T over the interval [ t 1 , t 2 ] [t_1, t_2] and the line segments connecting the origin with p ( t 1 ) \mathbf{p}(t_1) and the origin with p ( t 2 ) \mathbf{p}(t_2) is given by the famous formula,

A = 1 2 t 1 t 2 ( x ( t ) y ( t ) x ( t ) y ( t ) ) d t ( 9 ) A = \dfrac{1}{2} \left| \displaystyle \int_{t_1}^{t_2} \left( x(t) y'(t) - x'(t) y(t) \right) dt \right| \hspace{24pt} (9)

For our curve,

x ( t ) = d x + c t a s t 2 x(t) = d_x + c t - a s t^2

y ( t ) = d y + s t + a c t 2 y(t) = d_y + s t + a c t^2

And, the derivatives are,

x ( t ) = c 2 a s t x'(t) = c - 2 a s t

y ( t ) = s + 2 a c t y'(t) = s + 2 a c t

Plugging this into the above formula gives,

A = 1 2 t 1 t 2 ( ( d x + c t a s t 2 ) ( s + 2 a c t ) ( d y + s t + a c t 2 ) ( c 2 a s t ) ) d t A = \dfrac{1}{2} \left| \displaystyle \int_{t_1}^{t_2} \left( (d_x + c t - a s t^2 )(s + 2 a c t ) - (d_y + s t + ac t^2)(c - 2 a s t ) \right) dt \right|

Expanding, simplifying and re-arranging, this becomes,

A = 1 2 t 1 t 2 ( ( s d x c d y ) + 2 a t ( c d x + s d y ) + a t 2 ) ) d t A = \dfrac{1}{2} \left| \displaystyle \int_{t_1}^{t_2} \left( (s dx - c dy ) + 2a t ( c dx + s dy ) + a t^2 ) \right) dt \right|

Now this is straightforward to integrate, and it evaluates to 24.8 \boxed{ \approx 24.8 }

David Vreken
Mar 11, 2019

Any area bounded by the x x -axis, y y -axis, and a parabola in the form of y = a x 2 y = ax^2 that is rotated by θ \theta and translated so that it becomes tangent to the x x and y y axes is always 1 6 \frac{1}{6} the area of the rectangle defined by origin and the two tangent points, no matter what the value of a a or θ \theta is. The proof is as follows:

Instead of rotating the parabola y = a x 2 y = ax^2 , rotate the x x - and y y - axes by θ \theta instead, and draw rectangle A D B E ADBE defined by the origin and the two tangent points, and draw parallelogram A B F G ABFG so that F G FG is tangent to the parabola at C C and B F BF and A G AG are parallel to the y y -axis.

The rotated x x -axis has a slope of tan θ \tan \theta and the rotated y y -axis has a slope of cot θ -\cot \theta . The slopes of the parabola y = a x 2 y = ax^2 is defined by m = y = 2 a x m = y' = 2ax , so at A A it is 2 a x = tan θ 2ax = \tan \theta and this solves to coordinates A ( tan θ 2 a , tan 2 θ 4 a ) A(\frac{\tan \theta}{2a}, \frac{\tan^2 \theta}{4a}) , and at B B it is 2 a x = cot θ 2ax = -\cot \theta and this solves to coordinates B ( cot θ 2 a , cot 2 θ 4 a ) B(-\frac{\cot \theta}{2a}, \frac{\cot^2 \theta}{4a}) . The rotated x x -axis follows a line with the equation y tan 2 θ 4 a = tan θ ( x tan θ 2 a ) y - \frac{\tan^2 \theta}{4a} = \tan \theta (x - \frac{\tan \theta}{2a}) and the rotated y y -axis follows a line with the equation y cot 2 θ 4 a = cot θ ( x cot θ 2 a ) y - \frac{\cot^2 \theta}{4a} = -\cot \theta (x - \frac{\cot \theta}{2a}) , which intersects at D ( tan θ cot θ 4 a , 1 4 a ) D(\frac{\tan \theta - \cot \theta}{4a}, -\frac{1}{4a}) . Using these coordinates and the distance formula, segment A D AD has a length of 1 4 a sin θ cos 2 θ \frac{1}{4a \sin \theta \cos^2 \theta} and segment B D BD has a length of 1 4 a sin 2 θ cos θ \frac{1}{4a \sin^2 \theta \cos \theta} , which means rectangle A D B E ADBE has an area of A A D B E = 1 16 a 2 sin 3 θ cos 3 θ A_{ADBE} = \frac{1}{16a^2 \sin^3 \theta \cos^3 \theta} .

Using the slope formula, the slope between A A and B B is 1 2 ( tan θ cot θ ) \frac{1}{2}(\tan \theta - \cot \theta) , and the equation of the line along A B AB is y tan θ 2 a = 1 2 ( tan θ cot θ ) ( x tan 2 θ 4 a ) y - \frac{\tan \theta}{2a} = \frac{1}{2}(\tan \theta - \cot \theta)(x - \frac{\tan^2 \theta}{4a}) or y = 1 2 ( tan θ cot θ ) x + 1 4 a y = \frac{1}{2}(\tan \theta - \cot \theta)x + \frac{1}{4a} . The slopes of the parabola y = a x 2 y = ax^2 is defined by m = y = 2 a x m = y' = 2ax , so at C C it is 2 a x = 1 2 ( tan θ cot θ ) 2ax = \frac{1}{2}(\tan \theta - \cot \theta) and this solves to coordinates C ( tan θ cot θ 4 a , ( tan θ cot θ ) 2 16 a ) C(\frac{\tan \theta - \cot \theta}{4a}, \frac{(\tan \theta - \cot \theta)^2}{16a}) . The equation of the line along F G FG through C C is y ( tan θ cot θ ) 2 16 a = 1 2 ( tan θ cot θ ) ( x tan θ cot θ 4 a ) y - \frac{(\tan \theta - \cot \theta)^2}{16a} = \frac{1}{2}(\tan \theta - \cot \theta)(x - \frac{\tan \theta - \cot \theta}{4a}) or y = 1 2 ( tan θ cot θ ) x ( tan θ cot θ ) 2 16 a y = \frac{1}{2}(\tan \theta - \cot \theta)x - \frac{(\tan \theta - \cot \theta)^2}{16a} . The height of parallelogram A B F G ABFG is the difference of the y y -intercepts of the lines along A B AB and F G FG , which is h A B F G = 1 4 a ( tan θ cot θ ) 2 16 a = 1 16 a sin 2 θ cos 2 θ h_{ABFG} = \frac{1}{4a} - -\frac{(\tan \theta - \cot \theta)^2}{16a} = \frac{1}{16a \sin^2 \theta \cos^2 \theta} . The base of parallelogram A B F G ABFG is the difference of the x x -coordinates of A A and B B , which is b A B F G = tan θ 2 a cot θ 2 a = 1 2 a sin θ cos θ b_{ABFG} = \frac{\tan \theta}{2a} - \frac{\cot \theta}{2a} = \frac{1}{2a \sin \theta \cos \theta} . The area of parallelogram A B F G ABFG is A A B F G = b A B F G h A B F G = 1 32 a 2 sin 3 θ cos 3 θ A_{ABFG} = b_{ABFG} \cdot h_{ABFG} = \frac{1}{32a^2 \sin^3 \theta \cos^3 \theta} , so the area of the region in the parabola enclosed by the parallelogram is A p a r a = 2 3 A A B F G = 1 48 a 2 sin 3 θ cos 3 θ = 1 3 A A D B E A_{para} = \frac{2}{3}A_{ABFG} = \frac{1}{48a^2 \sin^3 \theta \cos^3 \theta} = \frac{1}{3}A_{ADBE} .

The area of the shaded region is the difference between the area of A D B E \triangle ADBE and the parabola enclosed by parallelogram A B F G ABFG , or A s = 1 2 A A D B E 1 3 A A D B E = 1 6 A A D B E = 1 96 a 2 sin 3 θ cos 3 θ A_{s} = \frac{1}{2}A_{ADBE} - \frac{1}{3}A_{ADBE} = \frac{1}{6}A_{ADBE} = \frac{1}{96a^2 \sin^3 \theta \cos^3 \theta} . Therefore, the area bounded by the x x -axis, y y -axis, and a parabola in the form of y = a x 2 y = ax^2 that is rotated by θ \theta and translated so that it becomes tangent to the x x and y y axes is always 1 6 \frac{1}{6} the area of the rectangle defined by origin and the two tangent points.

In this problem, a = 1 16 a = \frac{1}{16} and θ = π 5 \theta = \frac{\pi}{5} , so the area of the shaded region is A s = 1 96 ( 1 16 ) 2 sin 3 π 5 cos 3 π 5 24.8 A_{s} = \frac{1}{96(\frac{1}{16})^2 \sin^3 \frac{\pi}{5} \cos^3 \frac{\pi}{5}} \approx \boxed{24.8} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...