A partial harmonic series...

Calculus Level 2

lim n i = n A n 1 i = ? \large \displaystyle \lim_{n\to\infty} \sum\limits_{i=n}^{A·n} \dfrac{1}{i} = ?

A A A^A A e A^e ln ( A n ) \ln\left( \frac{A}{n}\right) ln ( A n ) \ln(A·n) e A e^A ln ( n ) \ln(n) ln ( A ) \ln(A) e A n e^ \frac{A}{n}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Relevant wiki: Harmonic Number

L = lim n k = n A n 1 k = lim n ( k = 1 A n 1 k k = 1 n 1 k ) Since the n th harmonic number H n = k = 1 n 1 k = lim n ( H A n H n ) and lim n ( H n ln n ) = γ = lim n ( ln ( A n ) ln n ) where γ is the Euler-Mascheroni constant. = lim n ln ( A n n ) = ln A \begin{aligned} L & = \lim_{n \to \infty} \sum_{k=n}{An} \frac 1k \\ & = \lim_{n \to \infty} \left(\sum_{k=1}^{An} \frac 1k - \sum_{k=1}^n \frac 1k \right) & \small \color{#3D99F6} \text{Since the }n\text{th harmonic number }H_n = \sum_{k=1}^n \frac 1k \\ & = \lim_{n \to \infty} \left(H_{An} - H_n\right) & \small \color{#3D99F6} \text{and } \lim_{n \to \infty} \left(H_n - \ln n\right) = \gamma \\ & = \lim_{n \to \infty} \left(\ln (An) - \ln n \right) & \small \color{#3D99F6} \text{where } \gamma \text{ is the Euler-Mascheroni constant.} \\ & = \lim_{n \to \infty} \ln \left(\frac {An}n\right) \\ & = \boxed {\ln A} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...