A past problem

Algebra Level 4

Let a , b a,b and c c be the roots of x 3 4 x 8 = 0 x^3-4x-8=0 . Find the numerical value of the expression a + 2 a 2 + b + 2 b 2 + c + 2 c 2 \dfrac{a+2}{a-2}+\dfrac{b+2}{b-2}+\dfrac{c+2}{c-2}


Source: 17th Philippine Mathematical Olympiad (2014)


The answer is 7.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Rishabh Jain
Jul 7, 2016

METHOD-1

The expression is : cyc a + 2 a 2 = cyc ( 1 + 4 a 2 ) \displaystyle\sum_{\text{cyc}} \dfrac{a+2}{a-2}=\displaystyle\sum_{\text{cyc}}\left(1+\dfrac{4}{a-2}\right) = 3 + 4 cyc 1 a 2 =3+ 4\displaystyle\sum_{\text{cyc}}\dfrac 1{a-2}

= 3 + 4 ( f ( 2 ) f ( 2 ) ) = 3 + 4 = 7 =3+4\left(\dfrac{-f'(2)}{f(2)}\right)=3+4=\boxed 7

( ln f ( x ) = cyc ( x a ) f ( x ) f ( x ) = cyc 1 a x ) (\color{#0C6AC7}{\small{\because\ln f(x)= \displaystyle\sum_{\text{cyc}}(x-a)\implies \dfrac{-f'(x)}{f(x)}= \displaystyle\sum_{\text{cyc}}\dfrac{1}{a-x}}})

METHOD-2

After writing it as = 3 + 4 cyc 1 a 2 \small{=3+ 4\displaystyle\sum_{\text{cyc}}\dfrac 1{a-2}} , use transformation of roots technique s.t cyc 1 a 2 \small{\displaystyle\sum_{\text{cyc}}\dfrac 1{a-2}} is the sum of roots of polynomial in y y formed by substituting x = 2 y + 1 y x=\dfrac{2y+1}{y} in original equation. That resulting polynomial is y 3 y 2 = 0 y^3-y^2\cdots=0 whose sum is roots is 1 1 and hence answer is:

3 + 4 ( 1 ) = 7 3+4(1)=\boxed{7}

METHOD-3

a 3 4 a 8 = 0 4 a + 8 4 ( a + 2 ) = a 3 a + 2 = a 3 4 a^3-4a-8=0\implies \overbrace{4a+8}^{4(a+2)}=a^3\implies a+2=\dfrac{a^3}4 a 3 8 = 4 a ( a 2 ) ( a 2 + 2 a + 4 ) = 4 a a 2 = 4 a a 2 + 2 a + 4 a^3-8=4a\implies (a-2)(a^2+2a+4)=4a\implies a-2=\dfrac{4a}{a^2+2a+4}

Also, a 3 = 4 a + 8 a 4 = 4 a 2 + 7 a \color{#EC7300}{a^3=4a+8}\implies \color{magenta}{a^4=4a^2+7a}

Now substituting value of a 2 a-2 and a + 2 a+2 found earlier, the summation is:

= cyc a 4 + 2 a 3 + 4 a 2 16 =\sum_{\text{cyc}}\dfrac{\color{magenta}{a^4}+2\color{#EC7300}{a^3}+4a^2}{16} = cyc a 2 + 2 a + 2 2 =\sum_{\text{cyc}}\dfrac{a^2+2a+2}{2}

= ( ( cyc a ) 2 2 cyc a b ) + 2 cyc a + 6 2 =\dfrac{\left(\left(\displaystyle\sum_{\text{cyc}}a\right)^2-2\displaystyle\sum_{\text{cyc}}ab\right)+2\displaystyle\sum_{\text{cyc}}a+6}{2}

(By Vieta's formula, cyc a = 0 , cyc a b = 4 \color{#D61F06}{\small{\displaystyle\sum_{\text{cyc}}a=0,\displaystyle\sum_{\text{cyc}}ab=-4}} .)

= ( 0 2 ( 4 ) ) + 2 ( 0 ) + 6 2 = 7 =\dfrac{(0-2(-4))+2(0)+6}2=\boxed{7}

METHOD-4

After writing it as = 3 + 4 cyc 1 a 2 \small{=3+ 4\displaystyle\sum_{\text{cyc}}\dfrac 1{a-2}} , take LCM so that it equals:

= 3 + 4 × 12 + ( a b + b c + c a ) 4 ( a + b + c ) a b c + 4 ( a + b + c ) 2 ( a b + b c + c a ) 8 =3+4\times\dfrac{12+(ab+bc+ca)-4(a+b+c)}{abc+4(a+b+c)-2(ab+bc+ca)-8}

Substituting using Vieta's:

= 3 + 4 × 12 + ( 4 ) 0 8 2 ( 4 ) 8 = 3 + 4 ( 1 ) = 7 =3+4\times\dfrac{12+(-4)-0}{8-2(-4)-8}=3+4(1)=\boxed 7

METHOD-5

After writing it as = 3 + 4 cyc 1 a 2 \small{=3+ 4\displaystyle\sum_{\text{cyc}}\dfrac 1{a-2}} , substitute a 2 = 4 a a 2 + 2 a + 4 \small{a-2=\dfrac{4a}{a^2+2a+4}} such that sum is:

3 + cyc ( a + 2 + 4 a ) 3+\displaystyle\sum_{\text{cyc}}\left(a+2+\dfrac 4a\right)

= 3 + 0 + 6 + cyc 4 a =3+0+6+\displaystyle\sum_{\text{cyc}}\dfrac 4a

Now cyc 4 a \displaystyle\sum_{\text{cyc}}\dfrac 4a can be calculated using LCM , transforming polynomial or simply f ( 0 ) f ( 0 ) = 2 \dfrac{-f'(0)}{f(0)}=-2 . Hence expression is:

3 + 0 + 6 2 = 7 3+0+6-2=\boxed 7

PS: The solution has already been so long so I would not extend it further ,other wise there are methods left :-)

Splendid work,bro!

Anik Mandal - 4 years, 11 months ago

Log in to reply

Thanks... :-)

Rishabh Jain - 4 years, 11 months ago

@Rishabh Cool - Great set of solutions, mate!

A Former Brilliant Member - 4 years, 11 months ago

Log in to reply

Thanks... :-)

Rishabh Jain - 4 years, 11 months ago

Thanks for giving me the chance to post Method 6

By the way, typo:

Method 5 - a 2 = 4 a a 2 + 2 a + 4 a-2=\dfrac{4a}{a^2+2a+4}

Hung Woei Neoh - 4 years, 11 months ago

Log in to reply

Lol.. No problem.. :-)

Rishabh Jain - 4 years, 11 months ago
Hung Woei Neoh
Jul 8, 2016

Method 6:

From Vieta's formula, we know that

a + b + c = 0 a b + a c + b c = 4 a b c = 8 \color{teal}{a+b+c=0}\\ \color{olive}{ab+ac+bc=-4}\\ \color{#624F41}{abc=8}

Now, to simplify the sum above, we let a = p + 2 , b = q + 2 , c = r + 2 \color{#20A900}{a=p+2},\;\color{#69047E}{b=q+2},\;\color{magenta}{c=r+2}

The sum becomes:

a + 2 a 2 + b + 2 b 2 + c + 2 c 2 = p + 2 + 2 p + 2 2 + q + 2 + 2 q + 2 2 + r + 2 + 2 r + 2 2 = p + 4 p + q + 4 q + r + 4 r = q r ( p + 4 ) + p r ( q + 4 ) + p q ( r + 4 ) p q r = 3 p q r + 4 ( p q + p r + q r ) p q r \dfrac{\color{#20A900}{a}+2}{\color{#20A900}{a}-2}+\dfrac{\color{#69047E}{b}+2}{\color{#69047E}{b}-2}+\dfrac{\color{magenta}{c}+2}{\color{magenta}{c}-2}\\ =\dfrac{\color{#20A900}{p+2}+2}{\color{#20A900}{p+2}-2}+\dfrac{\color{#69047E}{q+2}+2}{\color{#69047E}{q+2}-2}+\dfrac{\color{magenta}{r+2}+2}{\color{magenta}{r+2}-2}\\ =\dfrac{p+4}{p}+\dfrac{q+4}{q}+\dfrac{r+4}{r}\\ =\dfrac{qr(p+4)+pr(q+4)+pq(r+4)}{pqr}\\ =\dfrac{3\color{#EC7300}{pqr}+4(\color{#D61F06}{pq+pr+qr})}{\color{#EC7300}{pqr}}

Next, we convert the equations as well:

a + b + c = 0 p + 2 + q + 2 + r + 2 = 0 p + q + r = 6 \color{teal}{a+b+c=0}\\ \color{#20A900}{p+2}+\color{#69047E}{q+2}+\color{magenta}{r+2}=0\\ \implies \color{#3D99F6}{p+q+r=-6}

a b + a c + b c = 4 ( p + 2 ) ( q + 2 ) + ( p + 2 ) ( r + 2 ) + ( q + 2 ) ( r + 2 ) = 4 p q + p r + q r + 4 ( p + q + r ) + 12 = 4 p q + p r + q r = 4 ( 6 ) 12 4 = 8 \color{olive}{ab+ac+bc=-4}\\ (\color{#20A900}{p+2})(\color{#69047E}{q+2})+(\color{#20A900}{p+2})(\color{magenta}{r+2})+(\color{#69047E}{q+2})(\color{magenta}{r+2})=-4\\ \color{#D61F06}{pq+pr+qr}+4(\color{#3D99F6}{p+q+r})+12=-4\\ \implies \color{#D61F06}{pq+pr+qr}=-4(\color{#3D99F6}{-6})-12-4=\color{#D61F06}{8}

a b c = 8 ( p + 2 ) ( q + 2 ) ( r + 2 ) = 8 p q r + 2 ( p q + p r + q r ) + 4 ( p + q + r ) + 8 = 8 p q r = 8 2 ( 8 ) 4 ( 6 ) 8 = 8 \color{#624F41}{abc=8}\\ (\color{#20A900}{p+2})(\color{#69047E}{q+2})(\color{magenta}{r+2})=8\\ \color{#EC7300}{pqr}+2(\color{#D61F06}{pq+pr+qr})+4(\color{#3D99F6}{p+q+r})+8=8\\ \implies \color{#EC7300}{pqr}=8-2(\color{#D61F06}{8})-4(\color{#3D99F6}{-6})-8=\color{#EC7300}{8}

Therefore,

3 p q r + 4 ( p q + p r + q r ) p q r = 3 ( 8 ) + 4 ( 8 ) 8 = 7 ( 8 ) 8 = 7 \dfrac{3\color{#EC7300}{pqr}+4(\color{#D61F06}{pq+pr+qr})}{\color{#EC7300}{pqr}}\\ =\dfrac{3(\color{#EC7300}{8})+4(\color{#D61F06}{8})}{\color{#EC7300}{8}}\\ =\dfrac{7(8)}{8}\\ =\boxed{7}

Nice.... (+1)

Rishabh Jain - 4 years, 11 months ago

@Hung Woei Neoh - Thanks! :)

A Former Brilliant Member - 4 years, 11 months ago

From Vieta's Formulas, { a + b + c = 0 a b + a c + b c = 4 a b c = 8 \begin{cases} {a+b+c= 0} \\ {ab+ac+bc= -4} \\ {abc= 8} \end{cases}

This is another way of simplifying the algebraic expression given above:

a + 2 a 2 + b + 2 b 2 + c + 2 c 2 = a 2 a 2 + 4 a 2 + b 2 b 2 + 4 b 2 + c 2 c 2 + 4 c 2 = 1 + 4 a 2 + 1 + 4 b 2 + 1 + 4 c 2 = 3 + 4 × ( 1 a 2 + 1 b 2 + 1 c 2 ) = 3 + 4 × [ ( b 2 ) ( c 2 ) + ( a 2 ) ( c 2 ) + ( a 2 ) ( b 2 ) ( a 2 ) ( b 2 ) ( c 2 ) ] = 3 + 4 × [ b c 2 b 2 c + 4 + a c 2 a 2 c + 4 + a b 2 a 2 b + 4 a b c 2 a b 2 a c + 4 a 2 b c + 4 b + 4 c 8 ] = 3 + 4 × [ ( a b + b c + a c ) 4 ( a + b + c ) + 12 a b c 2 ( a b + a c + b c ) + 4 ( a + b + c ) 8 ] = 3 + 4 × [ 4 + 12 8 2 ( 4 ) + 4 ( 0 ) 8 ] = 3 + 4 × ( 8 8 ) = 3 + 4 = 7 \dfrac {a+2}{a-2}\ + \dfrac {b+2}{b-2}\ + \dfrac {c+2}{c-2}\\ = \dfrac{a-2}{a-2}\ + \dfrac{4}{a-2}\ + \dfrac{b-2}{b-2}\ + \dfrac{4}{b-2}\ + \dfrac{c-2}{c-2}\ + \dfrac{4}{c-2}\\ = 1 + \dfrac{4}{a-2}\ + 1 + \dfrac{4}{b-2}\ + 1 + \dfrac{4}{c-2}\\ = 3 + 4 \times (\dfrac{1}{a-2}\ + \dfrac{1}{b-2}\ + \dfrac{1}{c-2}\ )\\ = 3 + 4 \times [\dfrac{(b-2)(c-2)+(a-2)(c-2)+(a-2)(b-2)}{(a-2)(b-2)(c-2)}\ ]\\ = 3 + 4 \times [\dfrac{bc-2b-2c+4+ac-2a-2c+4+ab-2a-2b+4}{abc-2ab-2ac+4a-2bc+4b+4c-8}\ ]\\ = 3 + 4 \times [\dfrac{(ab+bc+ac)-4(a+b+c)+12}{abc-2(ab+ac+bc)+4(a+b+c)-8}\ ]\\ = 3 + 4 \times [\dfrac{-4+12}{8-2(-4)+4(0)-8}\ ]\\ = 3 + 4 \times (\dfrac{8}{8}\ )\\ = 3 + 4\\ = \boxed{7}\

Therefore, 7 \boxed{7} is the numerical value of the expression a + 2 a 2 + b + 2 b 2 + c + 2 c 2 \dfrac{a+2}{a-2}\ + \dfrac{b+2}{b-2}\ + \dfrac{c+2}{c-2} .

Moderator note:

Good approach using Vieta's formula to evaluate the expression.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...