Let a , b and c be the roots of x 3 − 4 x − 8 = 0 . Find the numerical value of the expression a − 2 a + 2 + b − 2 b + 2 + c − 2 c + 2
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Splendid work,bro!
@Rishabh Cool - Great set of solutions, mate!
Thanks for giving me the chance to post Method 6
By the way, typo:
Method 5 - a − 2 = a 2 + 2 a + 4 4 a
Method 6:
From Vieta's formula, we know that
a + b + c = 0 a b + a c + b c = − 4 a b c = 8
Now, to simplify the sum above, we let a = p + 2 , b = q + 2 , c = r + 2
The sum becomes:
a − 2 a + 2 + b − 2 b + 2 + c − 2 c + 2 = p + 2 − 2 p + 2 + 2 + q + 2 − 2 q + 2 + 2 + r + 2 − 2 r + 2 + 2 = p p + 4 + q q + 4 + r r + 4 = p q r q r ( p + 4 ) + p r ( q + 4 ) + p q ( r + 4 ) = p q r 3 p q r + 4 ( p q + p r + q r )
Next, we convert the equations as well:
a + b + c = 0 p + 2 + q + 2 + r + 2 = 0 ⟹ p + q + r = − 6
a b + a c + b c = − 4 ( p + 2 ) ( q + 2 ) + ( p + 2 ) ( r + 2 ) + ( q + 2 ) ( r + 2 ) = − 4 p q + p r + q r + 4 ( p + q + r ) + 1 2 = − 4 ⟹ p q + p r + q r = − 4 ( − 6 ) − 1 2 − 4 = 8
a b c = 8 ( p + 2 ) ( q + 2 ) ( r + 2 ) = 8 p q r + 2 ( p q + p r + q r ) + 4 ( p + q + r ) + 8 = 8 ⟹ p q r = 8 − 2 ( 8 ) − 4 ( − 6 ) − 8 = 8
Therefore,
p q r 3 p q r + 4 ( p q + p r + q r ) = 8 3 ( 8 ) + 4 ( 8 ) = 8 7 ( 8 ) = 7
Nice.... (+1)
@Hung Woei Neoh - Thanks! :)
From Vieta's Formulas, ⎩ ⎪ ⎨ ⎪ ⎧ a + b + c = 0 a b + a c + b c = − 4 a b c = 8
This is another way of simplifying the algebraic expression given above:
a − 2 a + 2 + b − 2 b + 2 + c − 2 c + 2 = a − 2 a − 2 + a − 2 4 + b − 2 b − 2 + b − 2 4 + c − 2 c − 2 + c − 2 4 = 1 + a − 2 4 + 1 + b − 2 4 + 1 + c − 2 4 = 3 + 4 × ( a − 2 1 + b − 2 1 + c − 2 1 ) = 3 + 4 × [ ( a − 2 ) ( b − 2 ) ( c − 2 ) ( b − 2 ) ( c − 2 ) + ( a − 2 ) ( c − 2 ) + ( a − 2 ) ( b − 2 ) ] = 3 + 4 × [ a b c − 2 a b − 2 a c + 4 a − 2 b c + 4 b + 4 c − 8 b c − 2 b − 2 c + 4 + a c − 2 a − 2 c + 4 + a b − 2 a − 2 b + 4 ] = 3 + 4 × [ a b c − 2 ( a b + a c + b c ) + 4 ( a + b + c ) − 8 ( a b + b c + a c ) − 4 ( a + b + c ) + 1 2 ] = 3 + 4 × [ 8 − 2 ( − 4 ) + 4 ( 0 ) − 8 − 4 + 1 2 ] = 3 + 4 × ( 8 8 ) = 3 + 4 = 7
Therefore, 7 is the numerical value of the expression a − 2 a + 2 + b − 2 b + 2 + c − 2 c + 2 .
Good approach using Vieta's formula to evaluate the expression.
Problem Loading...
Note Loading...
Set Loading...
METHOD-1
The expression is : cyc ∑ a − 2 a + 2 = cyc ∑ ( 1 + a − 2 4 ) = 3 + 4 cyc ∑ a − 2 1
= 3 + 4 ( f ( 2 ) − f ′ ( 2 ) ) = 3 + 4 = 7
( ∵ ln f ( x ) = cyc ∑ ( x − a ) ⟹ f ( x ) − f ′ ( x ) = cyc ∑ a − x 1 )
METHOD-2
After writing it as = 3 + 4 cyc ∑ a − 2 1 , use transformation of roots technique s.t cyc ∑ a − 2 1 is the sum of roots of polynomial in y formed by substituting x = y 2 y + 1 in original equation. That resulting polynomial is y 3 − y 2 ⋯ = 0 whose sum is roots is 1 and hence answer is:
3 + 4 ( 1 ) = 7
METHOD-3
a 3 − 4 a − 8 = 0 ⟹ 4 a + 8 4 ( a + 2 ) = a 3 ⟹ a + 2 = 4 a 3 a 3 − 8 = 4 a ⟹ ( a − 2 ) ( a 2 + 2 a + 4 ) = 4 a ⟹ a − 2 = a 2 + 2 a + 4 4 a
Also, a 3 = 4 a + 8 ⟹ a 4 = 4 a 2 + 7 a
Now substituting value of a − 2 and a + 2 found earlier, the summation is:
= cyc ∑ 1 6 a 4 + 2 a 3 + 4 a 2 = cyc ∑ 2 a 2 + 2 a + 2
= 2 ⎝ ⎛ ( cyc ∑ a ) 2 − 2 cyc ∑ a b ⎠ ⎞ + 2 cyc ∑ a + 6
(By Vieta's formula, cyc ∑ a = 0 , cyc ∑ a b = − 4 .)
= 2 ( 0 − 2 ( − 4 ) ) + 2 ( 0 ) + 6 = 7
METHOD-4
After writing it as = 3 + 4 cyc ∑ a − 2 1 , take LCM so that it equals:
= 3 + 4 × a b c + 4 ( a + b + c ) − 2 ( a b + b c + c a ) − 8 1 2 + ( a b + b c + c a ) − 4 ( a + b + c )
Substituting using Vieta's:
= 3 + 4 × 8 − 2 ( − 4 ) − 8 1 2 + ( − 4 ) − 0 = 3 + 4 ( 1 ) = 7
METHOD-5
After writing it as = 3 + 4 cyc ∑ a − 2 1 , substitute a − 2 = a 2 + 2 a + 4 4 a such that sum is:
3 + cyc ∑ ( a + 2 + a 4 )
= 3 + 0 + 6 + cyc ∑ a 4
Now cyc ∑ a 4 can be calculated using LCM , transforming polynomial or simply f ( 0 ) − f ′ ( 0 ) = − 2 . Hence expression is:
3 + 0 + 6 − 2 = 7
PS: The solution has already been so long so I would not extend it further ,other wise there are methods left :-)