A pentagon inscribed in a square

Geometry Level 4

A regular pentagon is inscribed in a unit square. If the side length of the pentagon is a a , then find 1 0 5 a \lfloor 10^5 a \rfloor


The answer is 62573.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

A C AC is an axis of symmetry of the compound shape, hence, A E F \triangle AEF is an isosceles right triangle. Thus,
A E = a 2 AE=\dfrac{a}{\sqrt{2}} and A E F = 45 \angle AEF=45{}^\circ . Since for the angle of the regular pentagon we have F E G = 108 \angle FEG=108{}^\circ , we get

B E G = 180 ( A E F + F E G ) = 180 ( 45 + 108 ) = 27 E B = a cos 27 \begin{aligned} & \angle BEG=180{}^\circ -\left( \angle AEF+\angle FEG \right)=180{}^\circ -\left( 45{}^\circ +108{}^\circ \right)=27{}^\circ \\ & \Rightarrow EB=a\cdot \cos 27{}^\circ \\ \end{aligned} Consequently,

A E + E B = A B a 2 + a cos 27 = 1 a = 1 1 2 + cos 27 a 0.62573786 \begin{aligned} AE+EB=AB & \Rightarrow \frac{a}{\sqrt{2}}+a\cdot \cos 27{}^\circ =1 \\ & \Rightarrow a=\frac{1}{\frac{1}{\sqrt{2}}+\cos 27{}^\circ } \\ & \Rightarrow a\approx 0.62573786 \\ \end{aligned} For the answer,

10 5 a = 62573 . \left\lfloor {{10}^{5}}a \right\rfloor =\boxed{62573}.


Here is a proof of the fact that A E F \triangle AEF is an isosceles right triangle, without taking symmetry for granted:
Let A E F = θ \angle AEF=\theta{}^\circ , A E = x 1 AE={{x}_{1}} , E B = x 2 EB={{x}_{2}} , A F = y 1 AF={{y}_{1}} , F D = y 2 FD={{y}_{2}} . Then, B E G = 180 ( 108 + θ ) = 72 θ \angle BEG=180{}^\circ -\left( 108{}^\circ +\theta {}^\circ \right)=72{}^\circ -\theta {}^\circ A F E = 90 θ \angle AFE=90{}^\circ -\theta{}^\circ D F I = 180 ( 108 + 90 θ ) = θ 18 \angle DFI=180{}^\circ -\left( 108{}^\circ +90{}^\circ -\theta {}^\circ \right)=\theta {}^\circ -18{}^\circ Hence, x 1 = a cos ( θ ) {{x}_{1}}=a\cdot \cos \left( \theta {}^\circ \right) x 2 = a cos ( 72 θ ) {{x}_{2}}=a\cdot \cos \left( 72{}^\circ -\theta {}^\circ \right) y 1 = a sin ( θ ) {{y}_{1}}=a\cdot \sin \left( \theta {}^\circ \right) y 2 = a cos ( θ 18 ) {{y}_{2}}=a\cdot \cos \left( \theta {}^\circ -18{}^\circ \right) Now, we can construct an equation for θ \theta :

x 1 + x 2 = 1 = y 1 + y 2 a cos ( θ ) + a cos ( 72 θ ) = a sin ( θ ) + a cos ( θ 18 ) cos ( θ ) + cos ( 72 ) cos ( θ ) + sin ( 72 ) sin ( θ ) = sin ( θ ) + cos ( θ ) cos ( 18 ) + sin ( θ ) sin ( 18 ) cos ( θ ) [ 1 + cos ( 72 ) cos ( 18 ) ] = sin ( θ ) [ 1 + sin ( 18 ) sin ( 72 ) ] cos ( θ ) = sin ( θ ) , since cos ( 72 ) = sin ( 18 ) and cos ( 18 ) = sin ( 72 ) tan ( θ ) = 1 θ = 45 \begin{aligned} {{x}_{1}}+{{x}_{2}}=1={{y}_{1}}+{{y}_{2}}& \Leftrightarrow \bcancel{a}\cdot \cos \left( \theta {}^\circ \right)+\bcancel{a}\cdot \cos \left( 72{}^\circ -\theta {}^\circ \right)=\bcancel{a}\cdot \sin \left( \theta {}^\circ \right)+\bcancel{a}\cdot \cos \left( \theta {}^\circ -18{}^\circ \right) \\ & \Leftrightarrow \cos \left( \theta {}^\circ \right)+\cos \left( 72{}^\circ \right)\cos \left( \theta {}^\circ \right)+\sin \left( 72{}^\circ \right)\sin \left( \theta {}^\circ \right)=\sin \left( \theta {}^\circ \right)+\cos \left( \theta {}^\circ \right)\cos \left( 18{}^\circ \right)+\sin \left( \theta {}^\circ \right)\sin \left( 18{}^\circ \right) \\ & \Leftrightarrow \cos \left( \theta {}^\circ \right)\left[ 1+\cos \left( 72{}^\circ \right)-\cos \left( 18{}^\circ \right) \right]=\sin \left( \theta {}^\circ \right)\left[ 1+\sin \left( 18{}^\circ \right)-\sin \left( 72{}^\circ \right) \right] \\ & \Leftrightarrow \cos \left( \theta {}^\circ \right)=\sin \left( \theta {}^\circ \right),\ \ \ \ \ \green {\text{ since }\cos \left( 72{}^\circ \right)=\sin \left( 18{}^\circ \right)\text{ and }\cos \left( 18{}^\circ \right)=\sin \left( 72{}^\circ \right)} \\ & \Leftrightarrow \tan \left( \theta {}^\circ \right)=1 \\ & \Leftrightarrow \theta =45 \\ \end{aligned} Hence, A E F \triangle AEF is an isosceles right triangle.

Note: @Atomsky Jahid This last statement implies that A C AC is, indeed, an axis of symmetry of the compound shape.

How do you prove that there is an axis of symmetry?

Atomsky Jahid - 9 months ago

@Atomsky Jahid I hope my reedited solution gives an answer.

Thanos Petropoulos - 9 months ago

For those who find nested radicals more aesthetic than sin 27 \sin{27}^\circ , I'll offer 8 2 2 ( 5 + 5 ) 0.625737 \sqrt{8 - 2\sqrt{2 (5 + \sqrt{5})}} \approx 0.625737

Fletcher Mattox - 8 months, 2 weeks ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...