A Pentagon Problem.

Geometry Level 4

A B C D E ABCDE is a regular pentagon . A B C D E A'B'C'D'E' is the pentagon inscribed in A B C D E ABCDE 's diagonals.

Find similarity ratio of A B C D E ABCDE to A B C D E A'B'C'D'E' .


The answer is 2.618.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

David Vreken
Jan 4, 2020

Let the side of the small pentagon be 1 1 and the side of the large pentagon be x x . The similarity ratio will then be x x .

Since B D = A B = x BD' = AB = x and E D = 1 E'D' = 1 , B E = x 1 BE' = x - 1 . By symmetry, A E = A D = B E = x 1 AE' = AD' = BE' = x - 1 .

Since A D E B A D \triangle AD'E' \sim \triangle BAD' , A D E D = B A A D \frac{AD'}{E'D'} = \frac{BA}{AD'} or x 1 1 = x x 1 \frac{x - 1}{1} = \frac{x}{x - 1} . This rearranges to x 2 3 x + 1 = 0 x^2 - 3x + 1 = 0 , which has a solution of x = 3 + 5 2 2.618 x = \frac{3 + \sqrt{5}}{2} \approx \boxed{2.618} for x > 1 x > 1 .

Bonus: The answer is also x = ϕ 2 x = \phi^2 , where ϕ = 1 + 5 2 \phi = \frac{1 + \sqrt{5}}{2} , the golden ratio.

İlker Can Erten
Jan 3, 2020

Let D E = a |DE|=a and A D = b |A'D|=b then A E = B E = b |A'E|=|B'E|=b

[ A E ] [A'E] is bisector of D E B ∠DEB' hence b b = a x x = b 2 a b \cdot b=a \cdot x⇒x=\dfrac{b^{2}}{a}

If we apply Law of Cosines on △ A B E A'B'E

( b 2 a ) 2 = 2 b 2 2 b 2 c o s 36 ° \left( \dfrac{b^{2}}{a}\right) ^{2}=2 \cdot b^{2}- 2 \cdot b^{2} \cdot cos36° , b 2 b^{2} s simplifies : b 2 a 2 = 2 2 c o s 36 ° \frac{b^{2}}{a^{2}}=2-2cos36°

We want to find similarity ratio that is equal to a x \dfrac{a}{x} and we know x = b 2 a x=\dfrac{b^{2}}{a} ,so a x = a b 2 a = a 2 b 2 \dfrac{a}{x}=\dfrac{a}{\frac{b^{2}}{a}}=\dfrac{a^{2}}{b^{2}}

We got : b 2 a 2 = 2 2 c o s 36 ° a 2 b 2 = 1 2 2 c o s 36 ° 2.618 \dfrac{b^{2}}{a^{2}}=2-2cos36°⇒\dfrac{a^{2}}{b^{2}}=\dfrac{1}{2-2cos36°}\approx \boxed{2.618}

Vinod Kumar
May 5, 2020

Let small pentagon side be =1, use bisecting theorem twice to get larger pentagon side =a by following two triangle bisecting Eqs:

x(2x+1)=a(1+x) and a=x^2

a=(1/4)(1+5^0.5)^2

Answer is a= 2.61803

Mariothedog .
Feb 25, 2020

A B = x AB = x

E D = y E'D' = y

C E D = 108 ° \angle C'E'D' = 108 \degree (Angles in a regular pentagon.)

B E A = 108 ° \angle BE'A = 108 \degree (Opposite angles.)

A E D = ( 360 2 108 ) / 2 = 72 ° \angle AE'D' = (360 - 2*108)/2 = 72 \degree (Angles in a circle sum to 360.)

E A D = 180 2 72 = 36 ° \angle E'AD' = 180 - 2*72 = 36 \degree (Angles in an isosceles triangle.)

Using the law of sines:

x sin 108 ° = A E sin 36 ° \frac{x}{\sin108\degree} = \frac{AE'}{\sin36\degree}

A E = x sin 108 ° sin 36 ° AE' = \frac{x}{\sin108\degree} * \sin36\degree

A E sin 72 ° = y sin 36 ° \frac{AE'}{\sin72\degree} = \frac{y}{\sin36\degree}

y = A E sin 72 ° sin 36 ° y = \frac{AE'}{\sin72\degree} * \sin36\degree

Ratio = x y \text{Ratio} = \frac{x}{y}

= x x sin 108 ° sin 36 ° sin 72 ° sin 36 ° = \frac{x}{\frac{\frac{x}{\sin108\degree} * \sin36\degree}{\sin72\degree} * \sin36\degree}

= x x 0.9511 0.5878 0.9511 0.5878 = \frac{x}{\frac{\frac{x}{0.9511} * 0.5878}{0.9511} * 0.5878}

= x 0.3633 x 0.951 = \frac{x}{\frac{0.3633x}{0.951}}

= x 0.382 x = \frac{x}{0.382x}

= 1 / 0.382 2.618 = 1/0.382 \approx 2.618

Let A E = 1 AE' = 1 . Then by symmetry, B E = B C = A E = 1. B A E = A B E = 180 ° 108 ° 2 = 36 ° A B = A E c o s ( 36 ° ) + B E c o s ( 36 ° ) = 2 c o s ( 36 ° ) = 2 s i n ( 54 ° ) Eq. 1 C B E = 108 ° 36 ° 36 ° = 36 ° E C = 2 B E s i n ( 18 ° ) = 2 s i n ( 18 ° ) Eq. 2 A B E C = 2 s i n ( 54 ° ) 2 s i n ( 18 ° ) = 3 s i n ( 18 ° ) 4 s i n 3 ( 18 ° ) s i n ( 18 ° ) = 3 4 s i n 2 ( 18 ° ) = 3 4 ( 5 1 4 ) 2 = 3 + 5 2 = 2.618 BE' = BC' = AE' = 1. \newline\angle BAE' = \angle ABE' = \frac{180\degree - 108\degree}{2} = 36\degree \newline AB = AE'cos(36\degree) + BE'cos(36\degree) = 2cos(36\degree) = 2sin(54\degree)\quad\cdots \text{Eq. 1}\newline \angle C'BE' = 108\degree - 36\degree - 36\degree = 36\degree\newline E'C' = 2BE'sin(18\degree) = 2sin(18\degree)\quad\cdots\text{Eq. 2} \newline \large\frac{AB}{E'C'} = \frac{2sin(54\degree)}{2sin(18\degree)} = \frac{3sin(18\degree) - 4sin^3(18\degree)}{sin(18\degree)} = \small 3 - 4sin^2(18\degree) = 3 - 4\big(\frac{\sqrt{5} - 1}{4}\big)^2 = \frac{3+\sqrt{5}}{2} = 2.618

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...