How verbose

Calculus Level 3

Without a calculator, evaluate for a N a\in\mathbb{N}

lim a 0 2019 a ! 2 ( x + a ) ! ( 1 2 a ) ! ( x a 1 ) ! ( 1 2 + a ) ! n = 1 a ( n 2 1 4 ) d x \lim_{a\to\infty} \int_0^{2019}\frac{a!^2(x+a)!\left(-\frac{1}{2}-a\right)!}{(x-a-1)!\left(\frac{1}{2}+a\right)!\prod\limits_{n=1}^a\left(n^2-\frac{1}{4}\right)}dx


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Ryan S
Oct 29, 2019

If sin ( x + i y ) = sin ( x ) cosh ( y ) + i cos ( x ) sinh ( y ) = 0 \sin(x+iy)=\sin(x)\cosh(y)+i\cos(x)\sinh(y)=0 , y = 0 y=0 . So sin ( π x ) \sin(\pi x) can be expressed as an product of x x , ( x n ) (x-n) s for n N n\in\mathbb{N} , ( x + n ) (x+n) s for n N n\in\mathbb{N} , and some non zero constant. For finite a a , p ( x ) = c x n = 1 a ( x n ) ( x + n ) p(x)=cx\prod_{n=1}^a(x-n)(x+n) is a finite polynomial and goes to infinity with x x ; c c such that the polynomial best approximates sin ( π x ) \sin(\pi x) near a finite x x will better apply to a wider range of x x s around zero as a a approaches infinity. The maximum value of sin ( π x ) \sin(\pi x) is 1 at, arbitrarily, x = 0.5 x=0.5 . So for a growing range around x = 0 x=0 , p ( x ) p ( 0.5 ) \frac{p(x)}{p(0.5)} will better approximate sin ( π x ) \sin(\pi x) as a a approaches infinity. Thus we have sin ( π x ) = lim a x n = 1 a ( x n ) ( x + n ) 0.5 n = 1 a ( 0.5 n ) ( 0.5 + n ) = \sin(\pi x)=\lim_{a\to\infty}\frac{x\prod_{n=1}^a(x-n)(x+n)}{0.5\prod_{n=1}^a(0.5-n)(0.5+n)}= x ( ( x + a ) ! x ! ) ( ( x 1 ) ! ( x a 1 ) ! ) 0.5 ( 0.5 + a ) ! ( 0.5 ) ! 0.5 ! ( 0.5 a ) ! \frac{ x \left( \frac{ (x+a)! } { x! } \right) \left( \frac{ (x-1)! } { (x-a-1)! } \right) } { \frac{ 0.5(0.5+a)!(-0.5)! } { 0.5!(-0.5-a)! } } . Knowing 1 2 ! = π 2 \frac{1}{2}!=\frac{\sqrt{\pi}}{2} and ( 1 2 ) ! = π \left(-\frac{1}{2}\right)!=\sqrt{\pi} , the above can be simplified to lim a ( x + a ) ! ( 0.5 a ) ! ( x a 1 ) ! ( 0.5 + a ) ! \lim_{a\to\infty}\frac{(x+a)!(-0.5-a)!}{(x-a-1)!(0.5+a)!} . Wallis’ formula gives π 2 = lim x n = 1 x 4 n 2 4 n 2 1 = lim x 4 x ( x ! ) 2 n = 1 x ( 4 n 2 1 ) = lim x x ! 2 n = 1 x ( n 2 0.25 ) \frac{\pi}{2}=\lim_{x\to\infty}\prod^x_{n=1}\frac{4n^2}{4n^2-1} =\lim_{x\to\infty}\frac{4^x(x!)^2}{\prod_{n=1}^x\left(4n^2-1\right)}=\lim_{x\to\infty}\frac{x!^2}{\prod_{n=1}^x\left(n^2-0.25\right)} . We can multiply these forms of π 2 \frac{\pi}{2} and sin ( π x ) \sin(\pi x) to get the inner part of the problem’s expression, which between x = 0 x=0 and x = x= some positive odd integer, encloses a signed area of 1 with the x axis.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...