A Point in Relation to the Vertices of an Equilateral Triangle

Geometry Level pending

A point P P is 4, 5, and 6 units respectively from the vertices of an equilateral triangle. Find the sum of the unit's digit of the possible sides of the triangle.

Image made with AutoCAD haha


The answer is 10.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Possible sides of the triangle: 8 . 5363... & 2 . 0324... S u m o f u n i t s d i g i t s : 8 + 2 = 10 \approx \quad \underline { 8 } .5363...\quad \& \quad \underline { 2 } .0324...\\ Sum\quad of\quad unit's\quad digits:\quad 8\quad +\quad 2\quad =\quad \boxed { 10 }

Actual solution: 3 ( a 4 + b 4 + c 4 + x 4 ) = ( a 2 + b 2 + c 2 + x 2 ) 2 3\left( { a }^{ 4 }\quad +\quad { b }^{ 4 }\quad +\quad { c }^{ 4 }\quad +\quad { x }^{ 4 } \right) \quad =\quad { \left( { a }^{ 2 }\quad +\quad { b }^{ 2 }\quad +\quad { c }^{ 2 }\quad +\quad { x }^{ 2 } \right) }^{ 2 } where a a , b b , and c c are the distances from the vertices, and x x is the length of the sides of the triangle.

3 ( 4 4 + 5 4 + 6 4 + x 4 ) = ( 4 2 + 5 2 + 6 2 + x 2 ) 2 3 x 4 + 6531 = x 4 + 154 x 2 + 5929 x 4 77 x 2 + 301 = 0 x 2 = 77 ± 77 2 4 ( 301 ) 2 x = 77 ± 15 21 2 x > 0 x 8.5363... a n d 2.0324 \Longrightarrow \quad 3\left( 4^{ 4 }\quad +\quad { 5 }^{ 4 }\quad +\quad { 6 }^{ 4 }\quad +\quad { x }^{ 4 } \right) \quad =\quad { \left( { 4 }^{ 2 }\quad +\quad { 5 }^{ 2 }\quad +\quad { 6 }^{ 2 }\quad +\quad { x }^{ 2 } \right) }^{ 2 }\\ \Longrightarrow \quad 3{ x }^{ 4 }\quad +\quad 6531\quad =\quad { x }^{ 4 }\quad +\quad 154{ x }^{ 2 }\quad +\quad 5929\\ \Longrightarrow \quad { x }^{ 4 }\quad -\quad 77{ x }^{ 2 }\quad +\quad 301\quad =\quad 0\\ \Longrightarrow \quad { x }^{ 2 }\quad =\quad \frac { 77\quad \pm \quad \sqrt { { 77 }^{ 2 }\quad -\quad 4\left( 301 \right) } }{ 2 } \\ \Longrightarrow \quad x\quad =\quad \sqrt { \frac { 77\quad \pm \quad 15\sqrt { 21 } }{ 2 } } \quad \because \quad x\quad >\quad 0\\ \Longrightarrow \quad x\quad \approx \quad 8.5363...\quad and\quad 2.0324

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...