A point inside the triangle

Geometry Level pending

Triangle A B C ABC has side lengths of A C = 360 , C B = 330 AC=360,CB=330 and A B = 250 AB=250 . If the perpendicular distance of point P P to side A C AC is 50 50 and to side A B AB is 70 70 , what is the perpendicular distance of point P P to side C B CB ?

2200 329 17750 2200\sqrt{329}-17750 40 329 3 3550 33 \dfrac{40\sqrt{329}}{3}-\dfrac{3550}{33} 2200 329 17750 156 \dfrac{2200\sqrt{329}-17750}{156} 1592360000 120 \dfrac{\sqrt{1592360000}}{120}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Consider the diagram above.

A r e a A B C = A r e a A P C + A r e a A P B + A r e a B P C Area_{ABC}=Area_{APC}+Area_{APB}+Area_{BPC}

A r e a A B C Area_{ABC} can be found using the Heron’s Formula. We have

s = 360 + 250 + 330 2 = 470 s=\dfrac{360+250+330}{2}=470

Therefore, A r e a A B C Area_{ABC} is:

A r e a A B C = s ( s a ) ( s b ) ( s c ) = 470 ( 470 360 ) ( 470 250 ) ( 470 330 ) = 1592360000 = 2200 329 Area_{ABC}=\sqrt{s(s-a)(s-b)(s-c)}=\sqrt{470(470-360)(470-250)(470-330)}=\sqrt{1592360000}=2200\sqrt{329}

Then we have

2200 329 = 1 2 ( 360 ) ( 50 ) + 1 2 ( 250 ) ( 70 ) + 1 2 ( 330 ) ( x ) 2200\sqrt{329}=\dfrac{1}{2}(360)(50)+\dfrac{1}{2}(250)(70)+\dfrac{1}{2}(330)(x)

2200 329 = 17750 + 165 x 2200\sqrt{329}=17750+165x

165 x = 2200 329 17750 165x=2200\sqrt{329}-17750

x = 2200 329 17750 165 = x=\dfrac{2200\sqrt{329}-17750}{165}= 40 329 3 3550 33 \boxed{\dfrac{40\sqrt{329}}{3}-\dfrac{3550}{33}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...