A Polynomial Problem with Vieta's Rules

Algebra Level 4

r 2 r 3 r 4 r 5 + r 1 r 3 r 4 r 5 + r 1 r 2 r 4 r 5 + r 1 r 2 r 3 r 5 + r 1 r 2 r 3 r 4 r_2 r_3 r_4 r_5 + r_1 r_3 r_4 r_5 + r_1 r_2 r_4 r_5 + r_1 r_2 r_3 r_5 + r_1 r_2 r_3 r_4

Let the roots of P ( x ) = 4 x 5 13 x 3 12 x + 7 P(x) = 4x^5 - 13x^3 - 12x+7 be r 1 , r 2 , r 3 , r 4 r_1, r_2, r_3, r_4 and r 5 r_5 , then find the value of the expression above.


The answer is -3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Akshat Sharda
Feb 26, 2016

r 2 r 3 r 4 r 5 + r 1 r 3 r 4 r 5 + r 1 r 2 r 4 r 5 + r 1 r 2 r 3 r 5 + r 1 r 2 r 3 r 4 ( 1 r 1 + 1 r 2 + 1 r 3 + 1 r 4 + 1 r 5 ) r 1 r 2 r 3 r 4 r 5 P ( x ) = 4 x 5 13 x 3 12 x + 7 r 1 r 2 r 3 r 4 r 5 = 7 4 x = 1 y P ( x ) = 7 y 5 12 y 4 + 13 y 2 + 4 y = ( 1 r 1 + 1 r 2 + 1 r 3 + 1 r 4 + 1 r 5 ) = 12 7 ( 1 r 1 + 1 r 2 + 1 r 3 + 1 r 4 + 1 r 5 ) r 1 r 2 r 3 r 4 r 5 = ( 12 7 ) ( 7 4 ) 3 r_2 r_3 r_4 r_5 + r_1 r_3 r_4 r_5 + r_1 r_2 r_4 r_5 + r_1 r_2 r_3 r_5 + r_1 r_2 r_3 r_4 \\ \left( \frac{1}{r_1}+\frac{1}{r_2}+\frac{1}{r_3}+\frac{1}{r_4}+\frac{1}{r_5}\right)r_1 r_2 r_3 r_4 r_5 \\ P(x)=4x^5-13x^3-12x+7 \\ r_1 r_2 r_3 r_4 r_5=-\frac{7}{4} \\ x=\frac{1}{y} \Rightarrow P(x)=7y^5-12y^4+-13y^2+4 \\ \sum y =\left( \frac{1}{r_1}+\frac{1}{r_2}+\frac{1}{r_3}+\frac{1}{r_4}+\frac{1}{r_5} \right) = \frac{12}{7} \\ \left( \frac{1}{r_1}+\frac{1}{r_2}+\frac{1}{r_3}+\frac{1}{r_4}+\frac{1}{r_5} \right)r_1 r_2 r_3 r_4 r_5 =\left( \frac{12}{7} \right) \left( - \frac{7}{4} \right) \\ \Rightarrow \boxed{-3}

Why complicating it so much? :P

Mehul Arora - 5 years, 3 months ago

Log in to reply

I don't see any complications :-P

Akshat Sharda - 5 years, 3 months ago

Log in to reply

LOL, I like your perception ;)

Mehul Arora - 5 years, 3 months ago

You can directly use Viete's Formula here. Inspection of the given expression reveals that it is sum of the roots of given quintic polynomial taken 4 4 at a time. This can be easily verified as every term in the given sum is a product of distinct roots and number of terms is 5 5 which is equal to ( 5 4 ) {5}\choose{4} .

Aditya Sky - 5 years, 3 months ago

Log in to reply

I knew that but I posted this solution just for the sake of variety.

Akshat Sharda - 5 years, 3 months ago

Log in to reply

That's good !

Aditya Sky - 5 years, 3 months ago
Jun Arro Estrella
Feb 27, 2016

This is simply Vieta's formula whose product of the sum of their roots taken 4 at a time. We know that if a , b , c , d , e a, b, c, d, e are the roots of f x 5 + g x 4 + h x 3 + i x 2 + j x + k fx^{5}+gx^{4}+hx^{3}+ix^{2}+jx+k , the value of a b c d + b c d e + c d e a + d e a b + e a b c = j / a abcd+bcde+cdea+deab+eabc = j/a

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...