A simple guess-and-check problem

Algebra Level pending

If a b = 3 a - b = 3 and a 2 + b 2 = 29 a^2 + b^2 = 29 , what is the value of a b ab ?


The answer is 10.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Austin Li
Jun 16, 2020

a^2+b^2 = 29 …(1)

a-b = 3

(a-b)^2 = 9 …(2)

a^2–2ab+b^2=9, or

a^2+b^2 -2ab = 9

29–2ab = 9

2ab = 29–9 = 20

so ab = 20/2 = 10.

That's the fastest solution! Use LATEX to make it look better. I recommend Daniel Liu's guide on Brilliant Latex (search it up on google).

Ved Pradhan - 12 months ago

a b = 3 a - b = 3

a 2 + b 2 = 29 a^2 + b^2 = 29

a = 3 + b a = 3 + b

( 3 + b ) 2 + b 2 = 29 = ( 3 + b ) ( 3 + b ) + b 2 = 29 = 9 + 3 b + 3 b + b 2 + b 2 = 29 = 9 + 6 b + b 2 + b 2 = 29 = 9 + 6 b + 2 b 2 = 29 = 2 b 2 + 6 b 20 = 0 = ( 2 b + 10 ) ( b 2 ) = 0 , b = 5 , b = 2 (3 + b)^2 + b^2 = 29 = (3 + b)(3 + b) + b^2 = 29 = 9 + 3b + 3b + b^2 + b^2 = 29 = 9 + 6b + b^2 + b^2 = 29 = 9 + 6b + 2b^2 = 29 = 2b^2 + 6b - 20 = 0 = (2b + 10)(b - 2) = 0, b = -5, b = 2

If b = 2 b = 2 , a 2 + 2 2 = 29 = a 2 + 4 = 29 = a 2 = 29 4 = 25 , a = 25 = 5 a^2 + 2^2 = 29 = a^2 + 4 = 29 = a^2 = 29 - 4 = 25, a = \surd 25 = 5 (or 5 - 5 )

If b = 5 b = -5 , a 2 + ( 5 ) 2 = 29 = a 2 + 25 = 29 = a 2 = 29 25 = 4 , a = 4 = 2 a^2 + (-5)^2 = 29 = a^2 + 25 = 29 = a^2 = 29 - 25 = 4, a = \surd 4 = -2 (or 2 2 )

a b 1 = 2 5 = 10 ab_1 = 2 * 5 = 10

a b 2 = 2 5 = 5 2 = 10 ab_2 = -2 * -5 = 5 * 2 = 10

a b 1 = a b 2 ab_1 = ab_2

Therefore ab = 10 \fbox{ab = 10}

Zakir Husain
Jun 17, 2020

Using the identity: ( a b ) 2 + 2 a b = a 2 + b 2 (a-b)^2+2ab=a^2+b^2 ( 3 ) 2 + 2 a b = 29 9 + 2 a b = 29 2 a b = 20 a b = 10 \Rightarrow (3)^2+2ab=29 \Rightarrow 9+2ab=29 \Rightarrow 2ab=20 \Rightarrow \boxed{ab=10}

Mahdi Raza
Jun 16, 2020

{ a b = 3 ( 1 ) a 2 + b 2 = 29 ( 2 ) \begin{cases} a-b = 3 &\ldots (1) \\ \red{a^2 + b^2 = 29} &\red{\ldots (2)} \end{cases}

( a b ) 2 = a 2 + b 2 2 a b [Square (1)] 9 = ( 29 ) 2 a b [Substitute (2)] 10 = a b \begin{aligned} (a-b)^2 &= a^2 + b^2 - 2ab &\blue{\text{[Square (1)]}} \\ 9 &= (\red{29})- 2ab &\blue{\text{[Substitute (2)]}} \\ \boxed{10} &= ab \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...