A Pre-RMO question! -15

What is the greatest possible perimeter of a right-angled triangle with integers side lengths if one of the sides has length 12 12 ?


The answer is 84.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Zakir Husain
Jun 13, 2020

Note that 12 12 can't be written as sum of two squares of integers 12 = 2 2 × 3 ; 3 3 ( m o d 4 ) \because 12=2^2\times3;3≡3(\mod 4) see Sum of two squares theorem

Therefore, 12 12 can't be the hypotenuse of the triangle. a Z + , b Z + 1 2 2 + b 2 = a 2 \therefore \exists a∈Z^+,b∈Z^+|12^2+b^2=a^2 144 + b 2 = a 2 \rightarrow 144+b^2=a^2 144 = ( a b ) ( a + b ) \rightarrow 144=(a-b)(a+b) a Z + ; b Z + , a > b ( a b ) Z + , ( a + b ) Z + ; a b < a + b \because a∈Z^+;b∈Z^+,a>b \therefore (a-b)∈Z^+,(a+b)∈Z^+;a-b<a+b Pair wise factors of 144 = ( a + b ) ( a b ) = 144 × 1 ; 72 × 2 ; 48 × 3 ; 36 × 4 ; 24 × 6 ; 18 × 8 ; 16 × 9 144=(a+b)(a-b)=144\times1;72\times2;48\times3;36\times4;24\times6;18\times8;16\times9 ( a + b ) ( a b ) = 144 × 1 ; 72 × 2 ; 48 × 3 ; 36 × 4 ; 24 × 6 ; 18 × 8 ; 16 × 9 (a+b)(a-b)=144\times1;72\times2;48\times3;36\times4;24\times6;18\times8;16\times9

Suppose it is given a + b = k 1 ; a b = k 2 2 a = k 1 + k 2 a = k 1 + k 2 2 a+b=k_1;a-b=k_2\rightarrow 2a=k_1+k_2 \rightarrow a=\frac{k_1+k_2}{2} as a Z ( k 1 + k 2 ) 0 ( m o d 2 ) a∈Z \therefore (k_1+k_2)≡0(\mod 2) ( a + b ) ( a b ) = 144 × 1 ; 72 × 2 ; 48 × 3 ; 36 × 4 ; 24 × 6 ; 18 × 8 ; 16 × 9 ; \rightarrow (a+b)(a-b)=\cancel{144\times1};\blue{72\times2};\cancel{48\times3};\blue{36\times4};\blue{24\times6};\blue{18\times8};\cancel{16\times9}; Now p e r i m e t e r = 12 + a + b perimeter=12+a+b\therefore for largest perimeter we need largest a + b a+b . a + b = 72 ; a b = 2 \therefore a+b=72;a-b=2 p e r i m e t e r = 12 + 72 = 84 perimeter=12+72=\boxed{84}

Sir, how many right triangles with integer side lengths have 12 as one side? I know only 2.

Vinayak Srivastava - 12 months ago

Log in to reply

@Vinayak Srivastava , All possible right triangle of integer sides are : ( 35 , 37 , 12 ) , ( 16 , 20 , 12 ) , ( 9 , 15 , 12 ) , ( 5 , 13 , 12 ) (35,37,12),(16,20,12),(9,15,12),(5,13,12) ; where sides are written in the format- ( p e r p e n d i c u l a r , h y p o t e n u s e , 12 ) (perpendicular,hypotenuse,12)

Also no need to call me sir, I'm not a teacher

Zakir Husain - 12 months ago

To maximize the perimeter 12 should not be hypotenuse.

Let the hypotenuse be h and other side be b.

Now,from pythagoras theorem,

12^2+b^2=h^2

(h+b)(h-b)=144

since we want to maximize perimeter so,we should maximize (h+b)

(h+b)(h-b)=144*1

h+b = 144 and h-b =1

But,in this case h and b ain't integer.

so,our remaining option is (h+b)(h-b) = 72*2

h+b=72

h-b=2

So,h=37 and b=35

Therefore maximum perimeter is 84

Cheers😊

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...