A Pre-RMO question! -16

Algebra Level 3

If a > b > c > d a>b>c>d are the only elements of a set, and the pairwise sum (taken 2 2 at a time) of distinct elements of the set in no particular order are 200 , 185 , 211 , 222 , x 200,185,211,222,x and y y . Find the sum of the digits of the greatest possible value of x + y x+y .


The answer is 13.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Zakir Husain
Jun 14, 2020

As a > b > c > d a + b > a + c ; b + c > b + d > c + d a>b>c>d \therefore a+b>a+c;b+c>b+d>c+d now either a + d > b + c a+d>b+c or b + c > a + d b+c>a+d

Case 1 1 ( a + d > b + c a+d>b+c ) :

As x + y x+y have to be largest x \therefore x and y y have to be the largest among 200 , 185 , 211 , 222 200,185,211,222 . Assuming x > y x>y a + b = x . . . . . [ 1 ] a+b=x.....[1] a + c = y . . . . . [ 2 ] a+c=y.....[2] a + d = 222..... [ 3 ] a+d=222.....[3] b + c = 211..... [ 4 ] b+c=211.....[4] b + d = 200..... [ 5 ] b+d=200.....[5] c + d = 185..... [ 6 ] c+d=185.....[6]

[ 4 ] [ 5 ] c d = 11..... [ 7 ] [4]-[5] \Rightarrow c-d=11.....[7] [ 3 ] [ 6 ] a c = 37..... [ 8 ] [3]-[6] \Rightarrow a-c=37.....[8] [ 7 ] + [ 8 ] a d = 48..... [ 9 ] [7]+[8] \Rightarrow a-d=48.....[9] [ 9 ] + [ 3 ] 2 a = 270 [9]+[3] \Rightarrow \boxed{2a=270} [ 1 ] + [ 2 ] x + y = 2 a + b + c = 270 + 211 = 481 [1]+[2] \Rightarrow x+y=2a+b+c=270+211=481 4 + 8 + 1 = 13 4+8+1=\boxed{13}

Case 2 2 ( b + c > a + d b+c>a+d ) :

As x + y x+y have to be largest x \therefore x and y y have to be the largest among 200 , 185 , 211 , 222 200,185,211,222 . Assuming x > y x>y a + b = x . . . . . [ 1 ] a+b=x.....[1] a + c = y . . . . . [ 2 ] a+c=y.....[2] b + c = 222..... [ 3 ] b+c=222.....[3] a + d = 211..... [ 4 ] a+d=211.....[4] b + d = 200..... [ 5 ] b+d=200.....[5] c + d = 185..... [ 6 ] c+d=185.....[6]

[ 3 ] [ 5 ] c d = 22..... [ 7 ] [3]-[5] \Rightarrow c-d=22.....[7] [ 4 ] [ 6 ] a c = 26..... [ 8 ] [4]-[6] \Rightarrow a-c=26.....[8] [ 7 ] + [ 8 ] a d = 48..... [ 9 ] [7]+[8] \Rightarrow a-d=48.....[9] [ 9 ] + [ 4 ] 2 a = 259 [9]+[4] \Rightarrow \boxed{2a=259} [ 1 ] + [ 2 ] x + y = 2 a + b + c = 259 + 222 = 481 [1]+[2] \Rightarrow x+y=2a+b+c=259+222=481 4 + 8 + 1 = 13 4+8+1=\boxed{13}

I found it using calculator, and did not see the word "sum of digits"!

Vinayak Srivastava - 12 months ago

Log in to reply

But you still had three tries, what did you type?

Mahdi Raza - 12 months ago

Log in to reply

I typed 480 and 482 :)

Vinayak Srivastava - 12 months ago

First let us compare sum of all possible pairs of distinct elements of the set { a , b , c , d } \{a\,,b\,,c\,,d\} such that a > b > c > d a > b > c > d .

Since a > b a > b and b > c b > c . Adding both the equation,

a + b > b + c Eq. 1 \Rightarrow a + b > b + c \hspace{20pt}\cdots\text{Eq. 1}

Since b > c b > c and c > d c > d . Adding both the equation,

b + c > c + d Eq. 2 \Rightarrow b + c > c + d \hspace{20pt}\cdots\text{Eq. 2}

Since b > c b > c

a + b > a + c Eq. 3 \Rightarrow a + b > a + c \hspace{20pt}\cdots\text{Eq. 3}

Since a > b a > b

a + c > b + c Eq. 4 \Rightarrow a + c > b + c \hspace{20pt}\cdots\text{Eq. 4}

Since c > d c > d

b + c > b + d Eq. 5 \Rightarrow b + c > b + d \hspace{20pt}\cdots\text{Eq. 5}

Since b > c b > c

b + d > c + d Eq. 6 \Rightarrow b + d > c + d \hspace{20pt}\cdots\text{Eq. 6}

From Eq. 1, Eq. 2, Eq. 3, Eq. 4, Eq. 5 and Eq. 6 we get relation between 5 pairwise sum:

a + b > a + c > b + c > b + d > c + d a + b > a + c > b + c > b + d > c + d

Since c > d c > d

a + c > a + d Eq. 7 \Rightarrow a + c > a + d \hspace{20pt}\cdots\text{Eq. 7}

Since a > b a > b

a + d > b + d Eq. 8 \Rightarrow a + d > b + d \hspace{20pt}\cdots\text{Eq. 8}

From Eq. 4, Eq. 5, Eq. 7 and Eq. 8, two cases arises:

Case 1 : a + c > a + d > b + c > b + d a + c > a + d > b + c > b + d

Case 2 : a + c > b + c > a + d > b + d a + c > b + c > a + d > b + d

So, overall two cases occurs:

Case 1 : a + b > a + c > a + d > b + c > b + d > c + d a + b > a + c > a + d > b + c > b + d > c + d

Given pairwise sums are 185 , 200 , 211 , 222 , x 185, 200, 211, 222, x and y y . To get the maximum possible possible values of x x and y y , we take x = a + b x = a + b and y = a + c y = a + c . The only possible allocations of value are:

c + d = 185 b + d = 200 b + c = 211 a + d = 222 c + d = 185\newline b + d = 200 \newline b + c = 211 \newline a + d = 222

Solving these 4 4 equations for a , b , c a\,,b\,,c and d d we get,

a = 135 , b = 113 , c = 98 , d = 87 a = 135\,,\,b = 113\,,\,c = 98\,,\,d = 87

So, x = a + b = 135 + 113 = 248 x = a + b = 135 + 113 = 248 and y = a + c = 135 + 98 = 233 y = a + c = 135 + 98 = 233

x + y = 248 + 233 = 481 \Rightarrow x + y = 248 + 233 = 481

Case 2 : a + b > a + c > b + c > a + d > b + d > c + d a + b > a + c > b + c > a + d > b + d > c + d

Agian, to get maximum possible value x x and y y we take x = a + b x = a + b and y = a + c y = a + c . The only possible allocations of value are:

c + d = 185 b + d = 200 a + d = 211 b + c = 222 c + d = 185\newline b + d = 200 \newline a + d = 211 \newline b + c = 222

Solving these 4 4 equations for a , b , c a\,,b\,,c and d d we get,

a = 129.5 , b = 118.5 , c = 103.5 , d = 81.5 a = 129.5\,,\,b = 118.5\,,\,c = 103.5\,,\,d = 81.5

So, x = a + b = 129.5 + 118.5 = 248 x = a + b = 129.5 + 118.5 = 248 and y = a + c = 129.5 + 103.5 = 233 y = a + c = 129.5 + 103.5 = 233

x + y = 248 + 233 = 481 \Rightarrow x + y = 248 + 233 = 481

We see that from both the cases, value of x + y x + y is same.

So, maximum possible value of x + y x + y is 481 481 .

Hence sum of digits of x + y = 4 + 8 + 1 = 13 x + y = 4 + 8 + 1 = \boxed{13} .

Pop Wong
Aug 2, 2020

Let ( m , n ) (m,n) be m + n m+n and x > y x > y

  • greatest possible value of x + y x+y means x is the largest and y is the second largest.
  • clearly, ( a , b ) = x (a,b)= x - is the largest and ( c , d ) = 185 (c,d)=185 - is the smallest
  • As ( a , c ) > ( b , c ) , ( a , d ) > ( b , d ) , (a,c) > (b,c) , (a,d) > (b,d), we compare ( b , c ) > ( b , d ) (b,c) > (b,d) so ( b , d ) = 200 (b,d) = 200
  • In the remaining 3 pairwise sums, ( a , c ) > (a,c) > both ( b , c ) (b,c) and ( a , d ) (a,d) . so ( a , c ) = y (a,c) = y
  • ( a , d ) , ( b , c ) \textcolor{#D61F06}{(a,d) , (b,c)} will match to either 222 222 or 211 211 .

x = ( a , b ) y = ( a , c ) 222 = ? 211 = ? 200 = ( b , d ) 185 = ( c , d ) x = (a,b) \\ y = (a,c) \\ 222 = ? \\ 211 = ? \\ 200= (b,d) \\ 185 = (c,d)

  • ( a , b , c , d ) = 222 + 211 = 433 ! \textcolor{#D61F06}{(a,b,c,d) = 222 + 211 = 433 !}
  • ( a , b , c , d ) ( b , d ) = ( a , c ) = 433 200 = 233 = y (a,b,c,d) - (b,d) = (a,c) = 433 - 200 = 233 = y
  • ( a , b , c , d ) ( c , d ) = ( a , b ) = 433 185 = 248 = x (a,b,c,d) - (c,d) = (a,b) = 433 - 185 = 248 = x
  • x + y = 233 + 248 = 481 x + y = 233+248 = 481

Therefore, the digits of the greatest possible value of x + y = 4 + 8 + 1 = 13 x+y = 4+8+1 = \boxed{13}


if we look for integers solution then

  • ( b , d ) ( c , d ) = b c = 15 b = c + 15 (b,d) - (c,d) = b-c = 15 \implies b=c+15
  • ( b , c ) = ( c + 15 , c ) (b, c) = (c+15, c) which is odd, ( b , c ) = 211 \therefore (b,c) = 211 and ( a , d ) = 222 (a,d) =222

  • 2 c + 15 = 211 c = 98 2c+15=211 \implies c = 98

  • b = 98 + 15 = 113 b=98+15= 113
  • d = 185 98 = 87 d = 185-98 = 87
  • a = 433 113 98 87 = 135 a=433-113-98-87=135
  • a , b , c , d = 135 , 113 , 98 , 87 {a,b,c,d} = {135,113,98,87}

x + y = 2 a + b + c = 2 ( 135 ) + 113 + 98 = 481 x + y = 2a + b + c = 2(135)+113 +98 = 481

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...