A Pre-RMO question! -20

Algebra Level 3

Suppose that 4 x 1 = 5 , 5 x 2 = 6 , 6 x 3 = 7...12 6 x 123 = 127 , 12 7 x 124 = 128 4^{x_1}=5,\space5^{x_2}=6,\space6^{x_3}=7...126^{x_{123}}=127,\space127^{x_{124}}=128 . If the product x 1 x 2 x 3 . . . x 123 x 124 x_1x_2x_3...x_{123}x_{124} is of the form m n , gcd ( m , n ) = 1 , m Z + , n Z + \frac{m}{n},\space\gcd(m,n)=1,\space m\in \mathbb Z^+,\space n\in \mathbb Z^+ , find m + n m+n .


The answer is 9.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Zakir Husain
Jun 22, 2020

12 7 x 124 = 128 127^{x_{124}}=128 ( 12 6 x 123 ) x 124 = 12 6 x 123 x 124 = 128 (126^{x_{123}})^{x_{124}}=126^{x_{123}x_{124}}=128 ( 12 5 x 122 ) x 123 x 124 = 128 (125^{x_{122}})^{x_{123}x_{124}}=128 Doing this many times you get 4 x 1 x 2 x 3 x 4 . . . x 123 x 124 = 128 4^{x_1x_2x_3x_4...x_{123}x_{124}}=128 ( 2 2 ) x 1 x 2 x 3 x 4 . . . x 123 x 124 = 2 2 ( x 1 x 2 x 3 x 4 . . . x 123 x 124 ) = 2 7 (2^2)^{x_1x_2x_3x_4...x_{123}x_{124}}=2^{2(x_1x_2x_3x_4...x_{123}x_{124})}=2^7 2 x 1 x 2 x 3 x 4 . . . x 123 x 124 = 7 \Rightarrow 2{x_1x_2x_3x_4...x_{123}x_{124}}=7 x 1 x 2 x 3 x 4 . . . x 123 x 124 = 7 2 {x_1x_2x_3x_4...x_{123}x_{124}}=\frac{7}{2} gcd ( 7 , 2 ) = 1 ; 2 Z ; 7 Z \gcd(7,2)=1;2\in Z ; 7\in Z 7 + 2 = 9 7+2=\boxed{9}

Nice problem!

Mahdi Raza - 11 months, 3 weeks ago

Log in to reply

I was trying to take the base change log formula, but this is much more elegant!

Mahdi Raza - 11 months, 3 weeks ago

4 x 1 = 5 x 1 = log 4 5 , 5 x 2 = 6 x 2 = log 5 6 12 7 x 1 24 = 128 x 124 = log 127 128 4^{x_1} = 5 \implies x_1 =\log_{4}5, 5^{x_2} = 6 \implies x_2 =\log_{5}6 \cdots 127^{x_124} = 128 \implies x_{124} =\log_{127}128

Product = x 1 × x 2 × × x 124 \text{Product} = x_1 \times x_2 \times \cdots \times x_{124}

Product = log 4 5 × log 5 6 × × log 127 128 \text{Product} = \log_{4}5 \times \log_{5}6 \times \cdots \times \log_{127}128

Product = log ( 5 ) log ( 4 ) × log ( 6 ) log ( 5 ) × × log ( 128 ) log ( 127 ) \text{Product} = \dfrac{\log(5)}{\log(4)} \times \dfrac{\log(6)}{\log(5)} \times \cdots \times \dfrac{\log(128)}{\log(127)}

Product = log ( 5 ) log ( 4 ) × log ( 6 ) log ( 5 ) × × log ( 128 ) log ( 127 ) \text{Product} = \dfrac{\cancel{\log(5)}}{\log(4)} \times \dfrac{\cancel{\log(6)}}{\cancel{\log(5)}} \times \cdots \times \dfrac{\log(128)}{\cancel{\log(127)}}

Product = log ( 128 ) log ( 4 ) = log 4 128 \text{Product} = \dfrac{\log(128)}{\log(4)} =\log_{4}128

Product = 7 2 m = 7 , n = 2 \text{Product} = \dfrac{7}{2} \implies m=7 , n=2

m + n = 7 + 2 = 9 \implies m+n=7+2=\boxed{9}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...