A Pre-RMO question! -26

Geometry Level 2

Let X O Y XOY be a triangle with X O Y = 90 ° \angle XOY=90\degree . Let M M and N N be mid-points of O X \overline{OX} and O Y \overline{OY} respectively.

If X N = 19 c m \overline{XN}=19cm and Y M = 22 c m \overline{YM}=22cm . Find measure of X Y \overline{XY} in cm.


The answer is 26.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Aryan Sanghi
Jul 21, 2020

Let O X = a OX = a and O Y = b OY = b

a 2 + b 2 4 = 361 a^2 + \frac{b^2}{4} = 361 a 2 4 + b 2 = 484 \frac{a^2}{4} + b^2 = 484

Solving, we'll get

a 2 = 64 and b 2 = 420 a^2 = 64 \text{ and } b^2 = 420

X Y = a 2 + b 2 XY = \sqrt{a^2 + b^2}

X Y = 26 \color{#3D99F6}{\boxed{XY = 26}}

Mahdi Raza
Aug 1, 2020
  • We draw the diagram and observe the relations among the two right-angled triangles

{ ( a ) 2 + ( 2 b ) 2 = ( 19 ) 2 ( 1 ) ( 2 a ) 2 + ( b ) 2 = ( 22 ) 2 ( 2 ) \begin{cases} (a)^2 + (2b)^2 = (19)^2 &\ldots \blue{(1)} \\ (2a)^2 + (b)^2 = (22)^2 &\ldots \blue{(2)} \end{cases}

  • Add the two equations ( 1 ) + ( 2 ) {\blue{(1)}} + {\blue{(2)}}

5 a 2 + 5 b 2 = 845 5 ( a 2 + b 2 ) = 845 a 2 + b 2 = 169 ( 3 ) \begin{aligned} 5a^2 + 5b^2 &= 845 \\ 5(a^2 + b^2) &= 845 \\ a^2 + b^2 &= 169 &\ldots \blue{(3)} \end{aligned}

  • We find the value of X Y XY

X Y = ( 2 a ) 2 + ( 2 b ) 2 = 4 ( a 2 + b 2 ) = 2 a 2 + b 2 = 2 × ( 3 ) = 26 \begin{aligned} XY &= \sqrt{(2a)^2 + (2b)^2} \\ &= \sqrt{4(a^2 + b^2)} \\ &= 2 \sqrt{a^2 + b^2} \\ &= 2 \times \sqrt{\blue{(3)}} \\ &= \boxed{26} \end{aligned}

Let the position coordinates of O , X , Y , M , N O, X, Y, M, N be ( 0 , 0 ) , ( a , 0 ) , ( 0 , b ) , ( a 2 , 0 ) , ( 0 , b 2 ) (0,0),(a, 0),(0,b),(\frac a2,0),(0,\frac b2) respectively. Then

4 a 2 + b 2 = 1444 4a^2+b^2=1444

a 2 + 4 b 2 = 1936 a^2+4b^2=1936

Solving we get

a 2 = 256 , b 2 = 420 , a 2 + b 2 = 676 a^2=256,b^2=420, a^2+b^2=676

Therefore X Y = a 2 + b 2 = 676 = 26 |\overline {XY}|=\sqrt {a^2+b^2}=\sqrt {676}=\boxed {26} .

Let length of O X \overline{OX} be 2 x 2x and that of O Y \overline{OY} be 2 y 2y X M = O M = x , O N = N Y = y \implies \overline{XM}=\overline{OM}=x,\overline{ON}=\overline{NY}=y

In right triangle X O N \triangle XON , ( 2 x ) 2 + y 2 = ( 19 ) 2 4 x 2 + y 2 = 361 ( 1 ) (2x)^2+y^2=(19)^2 \implies 4x^2+y^2=361\cdots (1)

In right triangle Y O M \triangle YOM , ( 2 y ) 2 + x 2 = ( 22 ) 2 4 y 2 + x 2 = 484 ( 2 ) (2y)^2+x^2=(22)^2 \implies 4y^2+x^2=484\cdots (2)

Adding ( 1 ) (1) and ( 2 ) (2) ,

4 x 2 + y 2 + 4 y 2 + x 2 = 361 + 484 4x^2+y^2+4y^2+x^2=361+484

5 y 2 + 5 x 2 = 845 x 2 + y 2 = 169 \implies 5y^2+5x^2=845 \implies x^2+y^2=169

In the big right triangle X O Y \triangle XOY ,

( 2 x ) 2 + ( 2 y ) 2 = ( X Y ) 2 (2x)^2+(2y)^2=(\overline{XY})^2 X Y = 4 ( x 2 + y 2 ) = 4 × 169 = ± 26 X Y = 26 (Since length is positive) \overline{XY}=\sqrt{4(x^2+y^2)}=\sqrt{4\times 169}=\pm{26} \implies \overline{XY}=26\text{(Since length is positive)}

X Y = 26 \Large{\boxed{\overline{XY}=26}}

Good @Vinayak Srivastava !

Zakir Husain - 10 months, 3 weeks ago

Log in to reply

Thank you Sir!

Vinayak Srivastava - 10 months, 3 weeks ago

See this theorem .

Zakir Husain - 10 months, 3 weeks ago

Log in to reply

Thank you! I will see to it.

Vinayak Srivastava - 10 months, 3 weeks ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...