A Pre-RMO question! -30

Algebra Level 2

An Infinite Geometric Progression has a sum of 2005 2005 . A new series is obtained by squaring the each term of the original series. The sum of the new series is 10 10 times the sum of the original series.

If the common ratio of the original series is m n \dfrac{m}{n} where m Z , n Z , gcd ( m , n ) = 1 m\in\mathbb{Z},n\in\mathbb{Z},\gcd(m,n)=1 , then find the sum of the digits of m + n m+n


The answer is 10.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Aug 22, 2020

Let the first term of the geometric progression be a a and its common ratio be r r , where r < 1 r<1 . Then we have:

a 1 r = 2005 . . . ( 1 ) a 2 1 r 2 = 20050 a 1 r a 1 + r = 20050 2005 a 1 + r = 20050 a 1 + r = 10 . . . ( 2 ) ( 1 ) ( 2 ) : 1 + r 1 r = 2005 10 = 401 2 2 2 r = 401 + 401 r r = 399 403 \begin{aligned} \frac a{1-r} & =2005 &... (1) \\ \frac {a^2} {1 - r^2} & =20050 \\ \frac a {1 - r}\cdot \frac {a} {1 + r} & =20050 \\ 2005 \cdot \frac a{1 +r} & =20050 \\ \frac a{1 +r} & =10 &... (2) \\ \frac {(1)} {(2)}: \ \frac {1 +r} {1 - r} & = \frac{2005} {10} =\frac{401}2 \\ 2-2r&=401+401r \\ \implies r&= \frac {399}{403} \end{aligned}

Therefore m + n = 399 + 403 = 802 m+n=399+403=802 and its sum of digits is 10 \boxed {1 0} .

Aryan Sanghi
Aug 22, 2020

Let first term = a \text{first term } = a , common ratio = r \text{common ratio }= r and S = 2005 S = 2005

a + a r + a r 2 = S a + ar + ar^2 \ldots \infty = S a 1 r = S ( 1 ) \boxed{\frac{a}{1-r} = S}\ldots(1)

a 2 + a 2 r 2 + a 2 r 4 = 10 S a^2 + a^2r^2 + a^2r^4 \ldots \infty = 10S a 2 1 r 2 = 10 S ( 2 ) \boxed{\frac{a^2}{1-r^2} = 10S}\ldots(2)

Doing ( 1 ) 2 ( 2 ) \text{Doing }\displaystyle \frac{(1)^2}{(2)}

1 r 2 ( 1 r ) 2 = S 10 \frac{1-r^2}{(1-r)^2} = \frac{S}{10} 1 + r 1 r = S 10 \frac{1+r}{1-r} = \frac{S}{10}

1 + r 1 r = 2005 10 = 401 2 \frac{1+r}{1-r} =\frac{2005}{10} = \frac{401}{2}

Apply Componendo and Dividendo

1 r = 403 399 \frac{1}{r} = \frac{403}{399}

r = 399 403 \color{#3D99F6}{\boxed{r = \frac{399}{403}}}

m = 399 , n = 403 , m + n = 802 and Sum of Digits = 10 m = 399, n = 403, m + n=802 \text{ and Sum of Digits } = 10

You've a typo in your penultimate line - you've written 2005 10 = 403 399 \frac{2005}{10}=\frac{403}{399} .

Chris Lewis - 9 months, 3 weeks ago

Log in to reply

Thanks for correction. I have corrected it. :)

Aryan Sanghi - 9 months, 3 weeks ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...