A Pre-RMO question! -5

Algebra Level 1

If x = 4 a b a + b x=\dfrac{4ab}{a+b} , find ( x + 2 a x 2 a + x + 2 b x 2 b ) 2 \left(\dfrac{x+2a}{x-2a}+\dfrac{x+2b}{x-2b}\right)^2 .


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Chew-Seong Cheong
May 31, 2020

Given that x = 4 a b a + b ( 1 a + 1 b ) x = 4 x = \dfrac {4ab}{a+b} \implies \left(\dfrac 1a+\dfrac 1b\right)x = 4 . Then we have:

( x + 2 a x 2 a + x + 2 b x 2 b ) 2 = ( ( 1 a + 1 b ) ( x + 2 a ) ( 1 a + 1 b ) ( x 2 a ) + ( 1 a + 1 b ) ( x + 2 b ) ( 1 a + 1 b ) ( x 2 b ) ) 2 = ( 4 + 2 + 2 a b 4 2 2 a b + 4 + 2 + 2 b a 4 2 2 b a ) 2 = ( 6 b + 2 a 2 b 2 a + 6 a + 2 b 2 a 2 b ) 2 = ( 3 b + a 3 a b b a ) 2 = ( 2 b 2 a b a ) 2 = 2 2 = 4 \begin{aligned} \left(\frac {x+2a}{x-2a} + \frac {x+2b}{x-2b} \right)^2 & = \left(\frac {\left(\frac 1a+\frac 1b\right)(x+2a)}{\left(\frac 1a+\frac 1b\right)(x-2a)} + \frac {\left(\frac 1a+\frac 1b\right)(x+2b)}{\left(\frac 1a+\frac 1b\right)(x-2b)} \right)^2 \\ & = \left(\frac {4+2+\frac {2a}b}{4-2-\frac {2a}b} + \frac {4+2+\frac {2b}a}{4-2-\frac {2b}a} \right)^2 \\ & = \left(\frac {6b+2a}{2b-2a} + \frac {6a+2b}{2a-2b} \right)^2 \\ & = \left(\frac {3b+a-3a-b}{b-a} \right)^2 \\ & = \left(\frac {2b-2a}{b-a} \right)^2 = 2^2 = \boxed 4 \end{aligned}

Really elegant!

Log in to reply

Glad that you like it.

Chew-Seong Cheong - 1 year ago

Super Brilliant!

Mahdi Raza - 1 year ago

Log in to reply

Glad that you like it.

Chew-Seong Cheong - 1 year ago
Ron Gallagher
May 31, 2020

I suppose it is cheating, but for the purposes of this test we know the answer is a numerical one independent of x,a, and b. Take a=1, b=2. Then, x=3 and simple arithmetic shows the desired quantity is 4

But how it's cheating?

Zakir Husain - 1 year ago

We only know we'll get a numerical answer independent of a and b prior to doing the problem because this is a problem on this website with a numerical answer. The other solutions actually prove the quantity is independent of a and b. But, "cheating" or not, all roads lead to Rome...

Ron Gallagher - 1 year ago
Aryan Sanghi
May 31, 2020

x = 4 a b a + b x = \frac{4ab}{a + b}

Above expression can be rearranged in 2-ways


1 s t 1^{st} way

x 2 a = 2 b a + b \frac{x}{2a} = \frac{2b}{a + b}

Applying componendo and dividendo

x + 2 a x 2 a = a + 3 b b a \frac{x + 2a}{x - 2a} = \frac{a + 3b}{b - a} ........ (1)


2 n d 2^{nd} way

x 2 b = 2 a a + b \frac{x}{2b} = \frac{2a}{a + b}

Applying componendo and dividendo

x + 2 b x 2 b = 3 a + b a b \frac{x + 2b}{x - 2b} = \frac{3a + b}{a - b} ........ (2)


Adding (1) and (2)

x + 2 a x 2 a + x + 2 b x 2 b = a + 3 b b a + 3 a + b a b \frac{x + 2a}{x - 2a} + \frac{x + 2b}{x - 2b} = \frac{a + 3b}{b - a} + \frac{3a + b}{a - b}

x + 2 a x 2 a + x + 2 b x 2 b = 2 \frac{x + 2a}{x - 2a} + \frac{x + 2b}{x - 2b} = 2

( x + 2 a x 2 a + x + 2 b x 2 b ) 2 = 4 \boxed{(\frac{x + 2a}{x - 2a} + \frac{x + 2b}{x - 2b}) ^ 2 = 4}

We can write x 2 a = 2 b a + b x + 2 a x 2 a = a + 3 b b a \frac{x}{2a}=\frac{2b}{a+b}\implies \frac{x+2a}{x-2a}=\frac{a+3b}{b-a} .

Also x 2 b = 2 a a + b x + 2 b x 2 b = 3 a + b a b \frac{x}{2b}=\frac{2a}{a+b}\implies \frac{x+2b}{x-2b}=\frac{3a+b}{a-b} .

So, the given expression is equal to

( 3 a + b a 3 b a b ) 2 = 4 \left (\frac{3a+b-a-3b}{a-b}\right) ^2=\boxed 4 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...