A Pre-RMO question! -6

Algebra Level 2

Cubic polynomial P ( x ) P(x) is such that P ( 0 ) = k P(0)=k , P ( 1 ) = 2 k P(1)=2k , P ( 1 ) = 3 k P(-1)=3k , and P ( 2 ) + P ( 2 ) = α k \\ P(2)+P(-2)=\alpha k , where α \alpha is a real number, find α \alpha .


The answer is 14.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Zakir Husain
May 31, 2020

Let P ( y ) = a y 3 + b y 2 + c y + d P(y)=ay^3+by^2+cy+d P ( 0 ) = d = k P(0)=\boxed{d=k} P ( 1 ) = a + b + c + d = a + b + c + k = 2 k P(1)=a+b+c+d=a+b+c\cancel{+k}=\cancel{2}k a + b + c = k \boxed{a+b+c=k} P ( 1 ) = a + b c + d = b a c + k = 3 k P(-1)=-a+b-c+d=b-a-c+k=3k b a c = 2 k b-a-c=2k b = 2 k + ( a + c ) = 2 k + ( k b ) = 3 k b b=2k+(a+c)=2k+(k-b)=3k-b 2 b = 3 k \boxed{2b=3k} Evaluating the expression P ( 2 ) + P ( 2 ) P(2)+P(-2) 2 3 a + 2 2 b + 2 c + d + ( 2 ) 3 a + 2 2 b 2 c + d = 8 a + 4 b + k 8 a + 4 b + k = 8 b + 2 k = 4 ( 2 b ) + 2 k = 4 ( 3 k ) + 2 k = 12 k + 2 k = 14 k 2^3a+2^2b\cancel{+2c}+d+(-2)^3a+2^2b\cancel{-2c}+d=\cancel{8a}+4b+k\cancel{-8a}+4b+k=8b+2k=4(2b)+2k=4(3k)+2k=12k+2k=\boxed{14}k

+1 Brilliant!

Mahdi Raza - 1 year ago
Chew-Seong Cheong
May 31, 2020

Let P ( x ) = a x 3 + b x 2 + c x + d P(x) = ax^3 + bx^2 + cx + d . Then

P ( 0 ) = d = k P ( 1 ) = a + b + c + k = 2 k P ( 1 ) = a + b c + k = 3 k P ( 1 ) + P ( 1 ) = 2 b + 2 k = 5 k 2 b = 3 k P ( 2 ) = 8 a + 4 b + 2 c + k P ( 2 ) = 8 a + 4 b 2 c + k P ( 2 ) + P ( 2 ) = 8 b + 2 k = 4 ( 2 b ) + 2 k = 12 k + 2 k = 14 k \begin{aligned} P(0) & = d = k \\ P(1) & = a+b+c+k = 2k \\ P(-1) & = -a +b-c +k = 3k \\ \implies P(1)+P(-1) & = 2b + 2k = 5k & \small \blue{\implies 2b = 3k} \\ P(2) & = 8a+4b+2c+k \\ P(-2) & = -8a + 4b - 2c + k \\ \implies P(2) + P(-2) & = 8b + 2k \\ & = 4(2b) + 2k \\ & = 12k + 2k \\ & = 14k \end{aligned}

Therefore, α = 14 \alpha = \boxed{14} .

+1 Brilliant!

Mahdi Raza - 1 year ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...