Evaluate
∫ 3 − 1 3 1 1 − x 4 x 4 ⋅ cos − 1 ( 1 + x 2 2 x ) d x
If it can be expressed as
a π ln ( b + c ) + e π d − f π
Then Find
abcdef + 1
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Yeah Bringing That answer Took More Time Than Solving
but i did the same yet it is 4 2 3 12 3 = 864 ? ? ans = 865 ??
Nice problem with a nice answer ! : )
I = ∫ 3 − 1 3 1 ( ( x 4 − 1 ) x 4 ) ( cos − 1 ( 1 + x 2 2 x ) ) d x = ∫ 3 − 1 3 1 ( ( x 4 − 1 ) x 4 ) ( 2 π − sin − 1 ( 1 + x 2 2 x ) ) d x I = 2 π ∫ 3 − 1 3 1 ( ( x 4 − 1 ) x 4 ) d x { ∵ sin − 1 x i s o d d f u n c t i o n }
Now same as Raghav Vaidyanathan solution
Problem Loading...
Note Loading...
Set Loading...
This problem is brilliantly engineered to give answer as 1 7 2 9 . It's pretty simple too.
I = ∫ 3 − 1 3 1 1 − x 4 x 4 cos − 1 1 + x 2 2 x d x p u t − x = t , ⇒ I = ∫ 3 − 1 3 1 1 − t 4 t 4 ( π − cos − 1 1 + t 2 2 t ) d t ⇒ 2 I = π ∫ 3 − 1 3 1 1 − x 4 x 4 d x I = 2 π ∫ 3 − 1 3 1 1 − x 4 x 4 − 1 + 1 d x = 2 π ∫ 3 − 1 3 1 − 1 + 1 − x 4 1 d x = 2 π ∫ 3 − 1 3 1 − 1 + 2 ( 1 − x 2 ) ( 1 + x 2 ) 1 − x 2 + 1 + x 2 d x = 2 π ∫ 3 − 1 3 1 − 1 + 2 ( 1 − x 2 ) 1 + 2 ( 1 + x 2 ) 1 d x = 2 π [ 3 − 2 + 2 1 ln ∣ ∣ ∣ ∣ ∣ 1 − 3 1 + 3 ∣ ∣ ∣ ∣ ∣ + 6 π ] I = 4 π ln ( 2 + 3 ) + 1 2 π 2 − 3 π ⇒ a b c d e f + 1 = 1 7 2 8 + 1 = 1 7 2 9
@Vraj Mehta