An Easy Integration,Is It?

Calculus Level 5

Evaluate

1 3 1 3 x 4 1 x 4 cos 1 ( 2 x 1 + x 2 ) d x \displaystyle \large \int^{\frac{1}{\sqrt{3}}}_{\frac{-1}{\sqrt{3}}} \dfrac{x^4}{1-x^4}\cdot \cos^{-1}(\dfrac{2x}{1+x^2}) \mathrm{dx}

If it can be expressed as

π a ln ( b + c ) + π d e π f \displaystyle \dfrac{\pi}{a}\ln(b+\sqrt{c}) +\dfrac{\pi^{d}}{e} - \dfrac{\pi}{\sqrt{f}}

Then Find

abcdef + 1 \large \text{abcdef} + 1


The answer is 1729.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

This problem is brilliantly engineered to give answer as 1729 1729 . It's pretty simple too.

I = 1 3 1 3 x 4 1 x 4 cos 1 2 x 1 + x 2 d x p u t x = t , I = 1 3 1 3 t 4 1 t 4 ( π cos 1 2 t 1 + t 2 ) d t 2 I = π 1 3 1 3 x 4 1 x 4 d x I = π 2 1 3 1 3 x 4 1 + 1 1 x 4 d x = π 2 1 3 1 3 1 + 1 1 x 4 d x = π 2 1 3 1 3 1 + 1 x 2 + 1 + x 2 2 ( 1 x 2 ) ( 1 + x 2 ) d x = π 2 1 3 1 3 1 + 1 2 ( 1 x 2 ) + 1 2 ( 1 + x 2 ) d x = π 2 [ 2 3 + 1 2 ln 1 + 3 1 3 + π 6 ] I = π 4 ln ( 2 + 3 ) + π 2 12 π 3 a b c d e f + 1 = 1728 + 1 = 1729 \displaystyle \large I=\int _{ \frac { -1 }{ \sqrt { 3 } } }^{ \frac { 1 }{ \sqrt { 3 } } }{ \frac { { x }^{ 4 } }{ 1-{ x }^{ 4 } } \cos ^{ -1 }{ \frac { 2x }{ 1+{ x }^{ 2 } } } } dx\\ put\quad -x=t,\quad \\ \Rightarrow I=\int _{ \frac { -1 }{ \sqrt { 3 } } }^{ \frac { 1 }{ \sqrt { 3 } } }{ \frac { { t }^{ 4 } }{ 1-{ t }^{ 4 } } (\pi -\cos ^{ -1 }{ \frac { 2t }{ 1+{ t }^{ 2 } } } ) } dt\\ \Rightarrow 2I=\pi \int _{ \frac { -1 }{ \sqrt { 3 } } }^{ \frac { 1 }{ \sqrt { 3 } } }{ \frac { { x }^{ 4 } }{ 1-{ x }^{ 4 } } } dx\\ I=\frac { \pi }{ 2 } \int _{ \frac { -1 }{ \sqrt { 3 } } }^{ \frac { 1 }{ \sqrt { 3 } } }{ \frac { { x }^{ 4 }-1+1 }{ 1-{ x }^{ 4 } } } dx=\frac { \pi }{ 2 } \int _{ \frac { -1 }{ \sqrt { 3 } } }^{ \frac { 1 }{ \sqrt { 3 } } }{ -1+\frac { 1 }{ 1-{ x }^{ 4 } } } dx\\ =\frac { \pi }{ 2 } \int _{ \frac { -1 }{ \sqrt { 3 } } }^{ \frac { 1 }{ \sqrt { 3 } } }{ -1+\frac { 1-{ x }^{ 2 }+1+{ x }^{ 2 } }{ 2(1-{ x }^{ 2 })(1+{ x }^{ 2 }) } } dx\\ =\frac { \pi }{ 2 } \int _{ \frac { -1 }{ \sqrt { 3 } } }^{ \frac { 1 }{ \sqrt { 3 } } }{ -1+\frac { 1 }{ 2(1-{ x }^{ 2 }) } +\frac { 1 }{ 2(1+{ x }^{ 2 }) } } dx\\ =\frac { \pi }{ 2 } \left[ \frac { -2 }{ \sqrt { 3 } } +\frac { 1 }{ 2 } \ln { \left| \frac { 1+\sqrt { 3 } }{ 1-\sqrt { 3 } } \right| } +\frac { \pi }{ 6 } \right] \\ I=\frac { \pi }{ 4 } \ln { (2+\sqrt { 3 } ) } +\frac { { \pi }^{ 2 } }{ 12 } -\frac { \pi }{ \sqrt { 3 } } \\ \Rightarrow abcdef+1=1728+1=\boxed { 1729 } \\ \\

@Vraj Mehta

Yeah Bringing That answer Took More Time Than Solving

Vraj Mehta - 6 years, 3 months ago

but i did the same yet it is 4 2 3 12 3 = 864 ? ? ans = 865 ??

A Former Brilliant Member - 4 years, 4 months ago

Nice problem with a nice answer ! : ) :)

Keshav Tiwari - 6 years ago
Bhargav Upadhyay
Mar 4, 2015

I = 1 3 1 3 ( x 4 ( x 4 1 ) ) ( cos 1 ( 2 x 1 + x 2 ) ) d x = 1 3 1 3 ( x 4 ( x 4 1 ) ) ( π 2 sin 1 ( 2 x 1 + x 2 ) ) d x I = π 2 1 3 1 3 ( x 4 ( x 4 1 ) ) d x { sin 1 x i s o d d f u n c t i o n } I=\int _{ \frac { -1 }{ \sqrt { 3 } } }^{ \frac { 1 }{ \sqrt { 3 } } }{ (\frac { { x }^{ 4 } }{ ({ x }^{ 4 }-1) } )\quad (\cos ^{ -1 }{ (\frac { 2x }{ 1+{ x }^{ 2 } } ) } ) } dx\\ =\int _{ \frac { -1 }{ \sqrt { 3 } } }^{ \frac { 1 }{ \sqrt { 3 } } }{ (\frac { { x }^{ 4 } }{ ({ x }^{ 4 }-1) } )\quad (\frac { \pi }{ 2 } -\sin ^{ -1 }{ (\frac { 2x }{ 1+{ x }^{ 2 } } ) } ) } dx\\ I=\frac { \pi }{ 2 } \int _{ \frac { -1 }{ \sqrt { 3 } } }^{ \frac { 1 }{ \sqrt { 3 } } }{ (\frac { { x }^{ 4 } }{ ({ x }^{ 4 }-1) } ) } dx\quad \{ \because \quad \sin ^{ -1 }{ x } \quad is\quad odd\quad function\} \\

Now same as Raghav Vaidyanathan solution

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...