A probe to sun - 3

A payload is fired from Earth's surface with initial speed v 0 = 2 × 1 0 4 v_0 = 2\times 10^4 m/s. If the mass and radius of earth are M = 6 × 1 0 24 M = 6\times 10^{24} Kg and R = 6.4 × 1 0 6 R = 6.4\times 10^6 m, find the payload's speed when it is very far from the Earth (in m/s).

Try similar problems

if you are lost see this


The answer is 16581.2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

U s i n g e n e r g y c o n s e r v a t i o n U i + K . E . i = U f + K . E . f G M e a r t h M l o a d R 2 + M l o a d ( u ) 2 2 = 0 + M l o a d ( V ) 2 2 a s p o t e n t i a l e n g e r g y U a t v e r y f a r w a y i s 0 V = [ ( u ) 2 G M e a r t h R 2 ] Using\quad energy\quad conservation\\ { U }_{ i }{ +K.E. }_{ i }{ =U }_{ f }{ +K.E. }_{ f }\\ -\frac { G{ M }_{ earth }{ M }_{ load } }{ { R }^{ 2 } } +\frac { { M }_{ load }{ \left( u \right) }^{ 2 } }{ 2 } =0+\frac { { M }_{ load }{ \left( V \right) }^{ 2 } }{ 2 } \\ as\quad potential\quad engergy\quad U\quad at\quad very\quad far\quad way\quad is\quad 0\\ V=\sqrt { \left[ { \left( u \right) }^{ 2 }-\frac { G{ M }_{ earth } }{ { R }^{ 2 } } \right] }

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...