A Problem about State Variables

Calculus Level 5

A discrete-time system is described by the state equation

V ( k + 1 ) = A V ( k ) + B u V(k+1) = A V(k) + B u

with V ( k ) = [ x ( k ) , y ( k ) ] T V(k) = [ x(k) , y(k) ]^T being the state vector, and

A = [ 2 3 0.5 0.5 ] A = \begin{bmatrix} 2 && -3 \\ 0.5 && -0.5 \end{bmatrix}

B = [ 0 1 ] B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}

u = 1 u = 1

If the system is initially relaxed, i.e. V ( 0 ) = [ 0 , 0 ] T V(0) = [ 0 , 0 ]^T , then what is the value of the following limit

lim k x ( k ) y ( k ) \lim_{k \to\infty} \frac{x(k)}{y(k)}


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Aareyan Manzoor
Jun 4, 2019

lemma: V ( n ) = ( k = 0 n 1 A k ) B V(n) = \left(\sum_{k=0}^{n-1} A^k\right) B proof(by induction): the base case V ( 1 ) = B V(1) = B holds. then V ( n + 1 ) = A V ( n ) + B = A ( k = 0 n 1 A k ) B + B = ( 1 + k = 0 n 1 A k + 1 ) B = ( k = 0 n A k ) B V(n+1) = A V(n)+B= A \left(\sum_{k=0}^{n-1} A^k\right) B +B = \left(1+\sum_{k=0}^{n-1} A^{k+1}\right)B = \left(\sum_{k=0}^{n} A^k\right)B hence proven by induction.

now diagonalize the matrix A: A = S 1 Λ S = [ 2 3 1 1 ] [ 1 / 2 0 0 1 ] [ 1 3 1 2 ] A =S^{-1} \Lambda S= \begin{bmatrix} 2 && 3 \\ 1 && 1 \end{bmatrix} \begin{bmatrix} 1/2 && 0 \\ 0 && 1 \end{bmatrix} \begin{bmatrix} -1 && 3 \\ 1 && -2 \end{bmatrix} hence V ( n ) = ( k = 0 n 1 A k ) B = S 1 [ 2 ( 1 2 n ) 0 0 n ] S B = [ 2 3 1 1 ] [ 2 ( 1 2 n ) 0 0 n ] [ 1 3 1 2 ] [ 0 1 ] = [ 4 ( 1 2 n ) 3 n 2 ( 1 2 n ) n ] [ 3 2 ] = [ 12 ( 1 2 n ) 6 n 6 ( 1 2 n ) 2 n ] V(n)=\left(\sum_{k=0}^{n-1} A^k\right) B = S^{-1} \begin{bmatrix} 2(1-2^{-n}) && 0 \\ 0 && n \end{bmatrix} S B \\ =\begin{bmatrix} 2 && 3 \\ 1 && 1 \end{bmatrix} \begin{bmatrix} 2(1-2^{-n}) && 0 \\ 0 && n \end{bmatrix} \begin{bmatrix} -1 && 3 \\ 1 && -2 \end{bmatrix}\begin{bmatrix} 0 \\ 1 \end{bmatrix} \\=\begin{bmatrix} 4(1-2^{-n}) && 3n \\ 2(1-2^{-n}) && n \end{bmatrix}\begin{bmatrix} 3 \\ -2 \end{bmatrix} =\begin{bmatrix} 12(1-2^{-n}) - 6n \\ 6(1-2^{-n}) - 2n \end{bmatrix} from this, we can plug the expressions into the limit to get lim n 12 ( 1 2 n ) 6 n 6 ( 1 2 n ) 2 n = 3 \lim_{n\to \infty} \dfrac{12(1-2^{-n}) - 6n}{ 6(1-2^{-n}) - 2n } = \boxed{3}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...