Let N = 61 3’s 3 3 3 3 3 3 … 3 and M = 62 6’s 6 6 6 6 6 6 … 6 . Find the sum of digits of the product N × M .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
N x M = 22222.........2197777777........78 :
60-2 60-7 : where the number of digits of ( N x m ) is ( N + M = 61 + 62 = 123 digit ) .
Let's define X k = k times 3 … 3 and Y k = k+1 times 6 … 6 , where k is a positive integer.
Let's now manipulate their product.
X k Y k = k times 3 … 3 × k+1 times 6 … 6 = k times 2 … 2 × k+1 times 9 … 9 = k times 2 … 2 × 1 0 k + 1 − k times 2 … 2 = k times 2 … 2 × 1 0 k + 1 − 1 0 k + k times 7 … 7 + 1 = k-1 times 2 … 2 × 1 0 k + 2 + 1 × 1 0 k + 1 + 9 × 1 0 k + k-1 times 7 … 7 × 1 0 + 8
Hence, the digit sum of X k Y k is equal to ( k − 1 ) × 2 + 1 + 9 + ( k − 1 ) × 7 + 8 = ( k + 1 ) × 9 .
Since N = X 6 1 and M = Y 6 1 , the digit sum of N M equals 6 2 × 9 = 5 5 8 .
Problem Loading...
Note Loading...
Set Loading...
n 1 2 3 4 5 n -digit of 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 ( n + 1 ) -digit of 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 Product N M 1 9 8 2 1 9 7 8 2 2 1 9 7 7 8 2 2 2 1 9 7 7 7 8 2 2 2 2 1 9 7 7 7 7 8 Sum of digits S d ( n ) 1 8 = 9 ( 1 + 1 ) 2 7 = 9 ( 2 + 1 ) 3 6 = 9 ( 3 + 1 ) 4 5 = 9 ( 4 + 1 ) 5 4 = 9 ( 5 + 1 )
Consider the products N M of first few n -digit of 3 and ( n + 1 ) -digit of 6 we get that the sum of digits of N M , S d ( n ) = 9 ( n + 1 ) . therefore, S d ( 6 1 ) = 9 ( 6 2 ) = 5 5 8 .
But the claim that S d ( n ) = 9 ( n + 1 ) for all n ≥ 1 should be proven.