An algebra problem by أحمد الحلاق

Algebra Level 4

Let N = 333333 3 61 3’s N = \underbrace{333333\ldots3}_{\text{61 3's}} and M = 666666 6 62 6’s M = \underbrace{666666\ldots6}_{\text{62 6's}} . Find the sum of digits of the product N × M N\times M .


The answer is 558.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Sep 18, 2016

n n -digit of 3 ( n + 1 ) -digit of 6 Product N M Sum of digits S d ( n ) 1 3 66 198 18 = 9 ( 1 + 1 ) 2 33 666 21978 27 = 9 ( 2 + 1 ) 3 333 6666 2219778 36 = 9 ( 3 + 1 ) 4 3333 66666 222197778 45 = 9 ( 4 + 1 ) 5 33333 666666 22221977778 54 = 9 ( 5 + 1 ) \begin{array} {crrrc} n & n \text{-digit of 3} & (n+1) \text{-digit of 6} & \text{Product }NM & \text{Sum of digits }S_d(n) \\ \hline 1 & 3 & 66 & 198 & 18 = 9(1+1) \\ 2 & 33 & 666 & 21978 & 27 = 9(2+1) \\ 3 & 333 & 6666 & 2219778 & 36 = 9(3+1) \\ 4 & 3333 & 66666 & 222197778 & 45 = 9(4+1) \\ 5 & 33333 & 666666 & 22221977778 & 54 = 9(5+1) \end{array}

Consider the products N M NM of first few n n -digit of 3 and ( n + 1 ) (n+1) -digit of 6 we get that the sum of digits of N M NM , S d ( n ) = 9 ( n + 1 ) S_d (n) = 9(n+1) . therefore, S d ( 61 ) = 9 ( 62 ) = 558 S_d (61) = 9(62) = \boxed{558} .

But the claim that S d ( n ) = 9 ( n + 1 ) S_d(n) = 9(n+1) for all n 1 n \ge 1 should be proven.

N x M = 22222.........2197777777........78 :
60-2 60-7 : where the number of digits of ( N x m ) is ( N + M = 61 + 62 = 123 digit ) .

mohamed aboalamayem - 3 years, 3 months ago
Jesse Nieminen
Sep 20, 2016

Let's define X k = 3 3 k times X_k = \underbrace{3\ldots3}_{\text{k times}} and Y k = 6 6 k+1 times Y_k = \underbrace{6\ldots6}_{\text{k+1 times}} , where k k is a positive integer.

Let's now manipulate their product.

X k Y k = 3 3 k times × 6 6 k+1 times = 2 2 k times × 9 9 k+1 times = 2 2 k times × 1 0 k + 1 2 2 k times = 2 2 k times × 1 0 k + 1 1 0 k + 7 7 k times + 1 = 2 2 k-1 times × 1 0 k + 2 + 1 × 1 0 k + 1 + 9 × 1 0 k + 7 7 k-1 times × 10 + 8 \begin{aligned}X_kY_k &= \underbrace{3\ldots3}_{\text{k times}} \times \underbrace{6\ldots6}_{\text{k+1 times}} \\ &= \underbrace{2\ldots2}_{\text{k times}} \times \underbrace{9\ldots9}_{\text{k+1 times}} \\ &= \underbrace{2\ldots2}_{\text{k times}} \times 10^{k+1} - \underbrace{2\ldots2}_{\text{k times}} \\ &= \underbrace{2\ldots2}_{\text{k times}} \times 10^{k+1} - 10^{k} +\underbrace{7\ldots7}_{\text{k times}} + 1 \\ &= \underbrace{2\ldots2}_{\text{k-1 times}} \times 10^{k+2} + 1 \times 10^{k+1} + 9 \times 10^{k} + \underbrace{7\ldots7}_{\text{k-1 times}} \times 10 + 8 \end{aligned}

Hence, the digit sum of X k Y k X_kY_k is equal to ( k 1 ) × 2 + 1 + 9 + ( k 1 ) × 7 + 8 = ( k + 1 ) × 9 \left(k-1\right)\times2 + 1 + 9 + \left(k-1\right)\times7+8 = \left(k+1\right)\times9 .

Since N = X 61 N = X_{61} and M = Y 61 M = Y_{61} , the digit sum of N M NM equals 62 × 9 = 558 62 \times 9 = \boxed{558} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...