An algebra problem by أحمد الحلاق

Algebra Level 5

log 10 2 2 + log 10 8 10 + log 10 32 50 + log 10 128 250 + + log 10 2 2 n 1 2 5 n 1 + = ? \frac {\log_{10}2}2 + \frac {\log_{10} 8}{10} + \frac {\log_{10} 32}{50} + \frac {\log_{10} 128} {250} + \cdots + \frac {\log_{10} 2^{2n-1}} {2\cdot 5^{n-1}} + \cdots =\, ?

Give your answer to 3 decimal places.


The answer is 0.282.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Sep 23, 2016

Let the sum be S S , then we have

S = n = 1 log 10 2 2 n 1 2 5 n 1 = n = 0 log 10 2 2 n + 1 2 5 n = n = 0 ( 2 n + 1 ) log 10 2 2 5 n = log 10 2 2 n = 0 2 n + 1 5 n = log 10 2 2 ( 2 n = 0 n 5 n + n = 0 1 5 n ) See Note. = log 10 2 2 ( 2 × 1 5 ( 1 1 5 ) 2 + 1 1 1 5 ) = log 10 2 2 ( 5 8 + 5 4 ) 0.282 \begin{aligned} S & = \sum_{n=1}^\infty \frac {\log_{10} 2^{2n-1}}{2\cdot 5^{n-1}} \\ & = \sum_{n=\color{#D61F06}{0}}^\infty \frac {\log_{10} 2^{\color{#D61F06} {2n+1}}}{2\cdot 5^{\color{#D61F06}{n}}} \\ & = \sum_{n=0}^\infty \frac {(2n+1)\log_{10} 2}{2\cdot 5^n} \\ & = \frac {\log_{10}2}2 \sum_{n=0}^\infty \frac {2n+1}{5^n} \\ & = \frac {\log_{10}2}2 \left(2 \color{#3D99F6}{\sum_{n=0}^\infty \frac n{5^n}} + \sum_{n=0}^\infty \frac 1{5^n} \right) & \small \color{#3D99F6}{\text{See Note.}} \\ & = \frac {\log_{10}2}2 \left(2 \times \color{#3D99F6}{\frac {\frac 15}{\left(1-\frac 15\right)^2}} + \frac 1{1-\frac 15} \right) \\ & = \frac {\log_{10}2}2 \left(\frac 58 + \frac 54 \right) \approx \boxed{0.282} \end{aligned}


Note:

See arithmetic-geometric progression (AGP) or as follows.

x 1 x = n = 1 x n Differentiate both sides w.r.t. x 1 ( 1 x ) 2 = n = 1 n x n 1 Multiply both sides by x x ( 1 x ) 2 = n = 1 n x n put x = 1 5 1 5 ( 1 1 5 ) 2 = n = 1 n 5 n \begin{aligned} \frac x{1-x} & = \sum_{n=1}^\infty x^n & \small \color{#3D99F6}{\text{Differentiate both sides w.r.t. }x} \\ \frac 1{(1-x)^2} & = \sum_{n=1}^\infty nx^{n-1} & \small \color{#3D99F6}{\text{Multiply both sides by }x} \\ \frac x{(1-x)^2} & = \sum_{n=1}^\infty nx^n & \small \color{#3D99F6}{\text{put }x = \frac 15} \\ \frac {\frac 15}{\left(1-\frac 15 \right)^2} & = \sum_{n=1}^\infty \frac n{5^n} \end{aligned}

Mark Recio
Sep 26, 2016

Let S = l o g 2 2 + 3 l o g 2 2 5 + 5 l o g 2 2 5 2 + 7 l o g 2 2 5 3 + . . . \cfrac{log 2}{2} + \cfrac{3log 2}{2*5} + \cfrac{5log2}{2*5^{2}} + \cfrac{7log2}{2*5^{3}} + ...

=> 2S = l o g 2 + 3 l o g 2 5 + 5 l o g 2 5 2 + 7 l o g 2 5 3 + . . . log2 + \cfrac{3log2}{5} + \cfrac{5log2}{5^{2}} + \cfrac{7log2}{5^{3}} + ...

Let V = 3 l o g 2 5 + 5 l o g 2 5 2 + 7 l o g 2 5 3 + . . . \cfrac{3log2}{5} + \cfrac{5log2}{5^{2}} + \cfrac{7log2}{5^{3}} + ...

=> 5V = 3 l o g 2 + 5 l o g 2 5 + 7 l o g 2 5 2 + . . . 3log2 + \cfrac{5log2}{5} + \cfrac{7log2}{5^{2}} + ...

=> 4V = 3 l o g 2 + 2 l o g 2 5 + 2 l o g 2 5 2 + . . . 3log2 + \cfrac{2log2}{5} + \cfrac{2log2}{5^{2}} + ...

=> V = 1 4 ( 3 l o g 2 + 2 l o g 2 5 1 2 l o g 2 5 ) \cfrac{1}{4} * (3log2 + \cfrac{\cfrac{2log2}{5}}{1 - \cfrac{2log2}{5}})

=> S = l o g 2 2 + 1 8 ( 3 l o g 2 + 2 l o g 2 5 2 l o g 2 ) \cfrac{log2}{2} + \cfrac{1}{8}(3log2 + \cfrac{2log2}{5-2log2}) ~ 0.281 0.281

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...