2 lo g 1 0 2 + 1 0 lo g 1 0 8 + 5 0 lo g 1 0 3 2 + 2 5 0 lo g 1 0 1 2 8 + ⋯ + 2 ⋅ 5 n − 1 lo g 1 0 2 2 n − 1 + ⋯ = ?
Give your answer to 3 decimal places.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Let S = 2 l o g 2 + 2 ∗ 5 3 l o g 2 + 2 ∗ 5 2 5 l o g 2 + 2 ∗ 5 3 7 l o g 2 + . . .
=> 2S = l o g 2 + 5 3 l o g 2 + 5 2 5 l o g 2 + 5 3 7 l o g 2 + . . .
Let V = 5 3 l o g 2 + 5 2 5 l o g 2 + 5 3 7 l o g 2 + . . .
=> 5V = 3 l o g 2 + 5 5 l o g 2 + 5 2 7 l o g 2 + . . .
=> 4V = 3 l o g 2 + 5 2 l o g 2 + 5 2 2 l o g 2 + . . .
=> V = 4 1 ∗ ( 3 l o g 2 + 1 − 5 2 l o g 2 5 2 l o g 2 )
=> S = 2 l o g 2 + 8 1 ( 3 l o g 2 + 5 − 2 l o g 2 2 l o g 2 ) ~ 0 . 2 8 1
Problem Loading...
Note Loading...
Set Loading...
Let the sum be S , then we have
S = n = 1 ∑ ∞ 2 ⋅ 5 n − 1 lo g 1 0 2 2 n − 1 = n = 0 ∑ ∞ 2 ⋅ 5 n lo g 1 0 2 2 n + 1 = n = 0 ∑ ∞ 2 ⋅ 5 n ( 2 n + 1 ) lo g 1 0 2 = 2 lo g 1 0 2 n = 0 ∑ ∞ 5 n 2 n + 1 = 2 lo g 1 0 2 ( 2 n = 0 ∑ ∞ 5 n n + n = 0 ∑ ∞ 5 n 1 ) = 2 lo g 1 0 2 ( 2 × ( 1 − 5 1 ) 2 5 1 + 1 − 5 1 1 ) = 2 lo g 1 0 2 ( 8 5 + 4 5 ) ≈ 0 . 2 8 2 See Note.
Note:
See arithmetic-geometric progression (AGP) or as follows.
1 − x x ( 1 − x ) 2 1 ( 1 − x ) 2 x ( 1 − 5 1 ) 2 5 1 = n = 1 ∑ ∞ x n = n = 1 ∑ ∞ n x n − 1 = n = 1 ∑ ∞ n x n = n = 1 ∑ ∞ 5 n n Differentiate both sides w.r.t. x Multiply both sides by x put x = 5 1