An algebra problem by أحمد الحلاق

Algebra Level 4

Let a n = log n ( n + 1 ) a_n = \log_n (n+1) and the sum A = n = 2 2001 1 log a n 10 \displaystyle A= \sum_{n=2}^{2001} \dfrac1{\log_{a_n} 10} . Find 1 0 A 10^A to 3 decimal places.


The answer is 10.967.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Sep 23, 2016

A = n = 2 2001 1 log a n 10 = n = 2 2001 1 log 10 10 log 10 a n = n = 2 2001 log 10 a n = n = 2 2001 log 10 ( log n ( n + 1 ) ) = n = 2 2001 log 10 ( log 10 ( n + 1 ) log 10 n ) = log 10 ( n = 2 2001 log 10 ( n + 1 ) log 10 n ) = log 10 ( log 10 2002 log 10 2 ) \begin{aligned} A & = \sum_{n=2}^{2001} \frac 1{\log_{a_n} 10} = \sum_{n=2}^{2001} \frac 1{\frac {\log_{10} 10}{\log_{10} a_n}} = \sum_{n=2}^{2001} \log_{10} a_n \\ & = \sum_{n=2}^{2001} \log_{10} \left(\log_n (n+1) \right) \\ & = \sum_{n=2}^{2001} \log_{10} \left(\frac {\log_{10} (n+1)}{\log_{10} n} \right) \\ & = \log_{10} \left(\prod_{n=2}^{2001} \frac {\log_{10} (n+1)}{\log_{10} n} \right) \\ & = \log_{10} \left(\frac {\log_{10} 2002}{\log_{10} 2} \right) \end{aligned}

Therefore, 1 0 A = log 10 2002 log 10 2 10.967 \begin{aligned} 10^A & = \frac {\log_{10} 2002}{\log_{10} 2} \approx \boxed{10.967} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...