An algebra problem by أحمد الحلاق

Algebra Level 5

Let A = [ 3 2 2 2 ] A = \begin{bmatrix}{3} & {2} \\ {2} & {2}\end{bmatrix} . Evaluate det ( 4 ( A 1 ) ) + det ( 4 ( A 1 ) 2 ) + det ( 4 ( A 1 ) 3 ) + + det ( 4 ( A 1 ) 6 ) \det (4(A^{-1})) + \det (4(A^{-1})^2) + \det (4(A^{-1})^3) + \cdots + \det (4(A^{-1})^6)


The answer is 15.75.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

det ( A ) = 2 det ( A 1 ) = 1 2 det ( 4 ( A 1 ) ) = 16 1 2 \det (A) = 2 \Rightarrow \det (A^{-1}) = \frac{1}{2} \Rightarrow \det (4(A^{-1})) = 16\cdot\frac{1}{2} Now due to the property det ( A B ) = det ( A ) det ( B ) \det (A \cdot B) = \det(A)\cdot \det(B) , we get det ( 4 ( A 1 ) ) + det ( 4 ( A 1 ) 2 ) + det ( 4 ( A 1 ) 3 ) + + det ( 4 ( A 1 ) 6 ) = \det (4(A^{-1})) + \det (4(A^{-1})^2) + \det (4(A^{-1})^3) + \cdots + \det (4(A^{-1})^6) = = 16 ( 1 2 + 1 4 + 1 8 + 1 16 + 1 32 + 1 64 ) = 8 + 4 + 2 + 1 + 1 / 2 + 1 / 4 = 15.75 = 16\cdot(\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} + \frac{1}{64}) = 8 + 4 + 2 +1 + 1/2 + 1/4 = \boxed{15.75}

highly over rated question.

rajdeep brahma - 3 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...