A geometry problem by حسن العطية

Geometry Level 4

If sin 2 θ = 1 4 \sin2\theta= \dfrac14 , and cos 6 θ + sin 6 θ = a b 6 \cos^6 \theta + \sin^6 \theta = \dfrac a{b^6} , where a a and b b are coprime positive integers, find b + a 3 \dfrac{b+a} 3 .


The answer is 21.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

( cos θ ) 6 + ( sin θ ) 6 = ( ( cos θ ) 2 + ( sin θ ) 2 ) ( ( cos θ ) 4 ( cos θ sin θ ) 2 + ( sin θ ) 4 ) { (\cos { \theta } ) }^{ 6 }+{ (\sin { \theta } ) }^{ 6 } = \left( { (\cos { \theta } ) }^{ 2 }+{ (\sin { \theta } ) }^{ 2 } \right) \left( { ({ \cos { \theta } }) }^{ 4 }-{(\cos { \theta } \sin { \theta } ) }^{2 }+{ (\sin { \theta } ) }^{ 4 } \right)

we know ( cos θ ) 2 + ( sin θ ) 2 = 1 { (\cos { \theta } ) }^{ 2 }+{ (\sin { \theta } ) }^{ 2 } = 1 so

( cos θ ) 4 ( cos θ sin θ ) 2 + ( sin θ ) 4 { ({ \cos { \theta } }) }^{ 4 }-{(\cos { \theta } \sin { \theta } ) }^{2 }+{ (\sin { \theta } ) }^{ 4 }

add and subtract 3 ( cos θ sin θ ) 2 t o ( ( cos θ ) 4 ( cos θ sin θ ) 2 + ( sin θ ) 4 ) 3{\left (\cos { \theta } \sin { \theta } \right) }^{2 } to \left( { ({ \cos { \theta } }) }^{ 4 }-{(\cos { \theta } \sin { \theta } ) }^{2 }+{ (\sin { \theta } ) }^{ 4 } \right)

( cos θ ) 4 + 2 ( cos θ sin θ ) 2 + ( sin θ ) 4 3 ( cos θ sin θ ) 2 { ({ \cos { \theta } }) }^{ 4 }+2{(\cos { \theta } \sin { \theta } ) }^{2 }+{ (\sin { \theta } ) }^{ 4 }-3{(\cos { \theta } \sin { \theta } ) }^{2 }

( ( cos θ ) 2 + ( sin θ ) 2 ) 2 3 ( cos θ sin θ ) 2 ) { \left( { (\cos { \theta } ) }^{ 2 }+{ (\sin { \theta } ) }^{ 2 } \right) }^{ 2 } -3{(\cos { \theta } \sin { \theta } ) }^{2 } )

1 3 ( cos θ sin θ ) 2 1-3{(\cos { \theta } \sin { \theta } ) }^{2 }

we know sin 2 θ = 2 sin θ cos θ \sin { 2\theta } = 2\sin { \theta } \cos { \theta }

2 sin θ cos θ = 1 4 2\sin { \theta } \cos { \theta } =\frac { 1 }{ 4 }

sin θ cos θ = 1 8 \sin { \theta } \cos { \theta } =\frac { 1 }{ 8 }

( cos θ sin θ ) 2 = 1 64 { \left( \cos { \theta } \sin { \theta } \right) }^{ 2 }=\frac { 1 }{ 64 }

So 1 3 64 = 61 64 1-\frac { 3 }{ 64 } = \frac { 61 }{ 64 }

So 61 2 6 = a b 6 \frac { 61 }{ { 2 }^{ 6 } } = \frac {a }{ { b}^{ 6 } }

Then 61 + 2 3 \frac { 61+2 }{ 3 }

63 3 \frac { 63 }{ 3 }

21 \boxed{21}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...