x → − ∞ lim e x + e − x e x − e − x = ?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Firstly let's look at the Maclaurin expansion of e x :
e x = 1 + 1 ! x + 2 ! x 2 + 3 ! x 3 + ⋯ = n = 0 ∑ n ! x n .
Evaluating and canceling out terms e x − e − x = 1 − 1 + 1 ! x + 1 ! x + 2 ! x 2 − 2 ! x 2 + ⋯ = 2 ( 1 ! x + 3 ! x 3 + 5 ! x 5 + ⋯ )
Since sinh x = 1 ! x + 3 ! x 3 + 5 ! x 5 + ⋯ , e x − e − x = 2 sinh x
Evaluating and canceling out terms e x + e − x = 1 + 1 + 1 ! x − 1 ! x + 2 ! x 2 + 2 ! x 2 + ⋯ = 2 ( 1 + 2 ! x 2 + 4 ! x 4 + 6 ! x 6 + ⋯ )
Similarly, cosh x = 1 + 2 ! x 2 + 4 ! x 4 + 6 ! x 6 + ⋯ , e x + e − x = 2 cosh x
Therefore e x + e − x e x − e − x = 2 cosh x 2 sinh x = cosh x sinh x and since as x → − ∞ , sinh x → ∞ , cosh x → − ∞ − ∞ ∞ = − 1 .
How do you say ∞/-∞=-1
Problem Loading...
Note Loading...
Set Loading...
L = x → − ∞ lim e x + e − x e x − e − x = x → − ∞ lim e 2 x + 1 e 2 x − 1 = 0 + 1 0 − 1 = − 1 Multiply up and down by e x