A calculus problem by Abdulrahman El Shafei

Calculus Level 3

lim x e x e x e x + e x = ? \large \lim_{ x\to-\infty }\dfrac { { e }^{ x }-{ e }^{ -x } }{ { e }^{ x }+{ e }^{ -x } } = \, ?

The limit doesn't exist 1 1 1 -1

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

L = lim x e x e x e x + e x Multiply up and down by e x = lim x e 2 x 1 e 2 x + 1 = 0 1 0 + 1 = 1 \begin{aligned} L & = \lim_{x \to -\infty} \frac {e^x-e^{-x}}{e^x+e^{-x}} & \small \color{#3D99F6} \text{Multiply up and down by }e^x \\ & = \lim_{x \to -\infty} \frac {e^{2x}-1}{e^{2x}+1} \\ & = \frac {0-1}{0+1} = \boxed{-1} \end{aligned}

Piero Sarti
Jan 2, 2018

Firstly let's look at the Maclaurin expansion of e x e^x :

e x = 1 + x 1 ! + x 2 2 ! + x 3 3 ! + = n = 0 x n n ! e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots = \displaystyle\sum_{n=0} \frac{x^n}{n!} .

Evaluating and canceling out terms e x e x = 1 1 + x 1 ! + x 1 ! + x 2 2 ! x 2 2 ! + = 2 ( x 1 ! + x 3 3 ! + x 5 5 ! + ) e^x - e^{-x} = 1 - 1 + \frac{x}{1!} + \frac{x}{1!} + \frac{x^2}{2!} - \frac{x^2}{2!} + \cdots = 2(\frac{x}{1!} + \frac{x^3}{3!} + \frac{x^5}{5!} + \cdots)

Since sinh x = x 1 ! + x 3 3 ! + x 5 5 ! + \sinh{x} = \frac{x}{1!} + \frac{x^3}{3!} + \frac{x^5}{5!} + \cdots , e x e x = 2 sinh x e^x - e^{-x} = 2\sinh{x}

Evaluating and canceling out terms e x + e x = 1 + 1 + x 1 ! x 1 ! + x 2 2 ! + x 2 2 ! + = 2 ( 1 + x 2 2 ! + x 4 4 ! + x 6 6 ! + ) e^x + e^{-x} = 1 + 1 + \frac{x}{1!} - \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^2}{2!} + \cdots = 2(1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \frac{x^6}{6!} + \cdots)

Similarly, cosh x = 1 + x 2 2 ! + x 4 4 ! + x 6 6 ! + \cosh{x} = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \frac{x^6}{6!} + \cdots , e x + e x = 2 cosh x e^x + e^{-x} = 2\cosh{x}

Therefore e x e x e x + e x = 2 sinh x 2 cosh x = sinh x cosh x \dfrac { { e }^{ x }-{ e }^{ -x } }{ { e }^{ x }+{ e }^{ -x } } = \dfrac{2\sinh{x}}{2\cosh{x}} = \dfrac{\sinh{x}}{\cosh{x}} and since as x , sinh x , cosh x x\to-\infty, \sinh{x}\to \infty, \cosh{x}\to-\infty = 1 \dfrac{\infty}{-\infty} = \boxed{-1} .

How do you say ∞/-∞=-1

Anubhab Das - 3 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...