A geometry problem by Aakhyat Singh

Geometry Level 3

If x cos A = y cos ( A + 2 π 3 ) = z cos ( A + 4 π 3 ) x\cos A=y \cos \left(A+\dfrac {2\pi}3\right) = z \cos \left(A+\dfrac {4\pi}3\right) , then find the value of 1 x + 1 y + 1 z \dfrac 1x+\dfrac 1y + \dfrac 1z .


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tom Engelsman
Sep 14, 2018

Let y = x ( c o s ( A ) c o s ( A + 2 π 3 ) ) y = x(\frac{cos(A)}{cos(A+\frac{2\pi}{3})}) , z = x ( c o s ( A ) c o s ( A + 4 π 3 ) ) z = x(\frac{cos(A)}{cos(A+\frac{4\pi}{3})}) for x , y , z 0 x,y,z \neq 0 AND A ( 2 n 1 ) π 2 ( n Z ) A \neq (2n-1) \cdot \frac{\pi}{2} (n \in \mathbb{Z}) . Thus:

1 x + 1 y + 1 z = ( 1 x ) [ 1 + c o s ( A + 2 π 3 ) c o s ( A ) + c o s ( A + 4 π 3 ) c o s ( A ) ] ; \frac{1}{x} + \frac{1}{y} + \frac{1}{z} = (\frac{1}{x}) \cdot [1 + \frac{cos(A+\frac{2\pi}{3})}{cos(A)} +\frac{cos(A+\frac{4\pi}{3})}{cos(A)} ];

or ( 1 x ) [ c o s ( A ) + ( c o s ( A ) c o s ( 2 π 3 ) s i n ( A ) s i n ( 2 π 3 ) ) + ( c o s ( A ) c o s ( 4 π 3 ) s i n ( A ) s i n ( 4 π 3 ) ) c o s ( A ) ] ; (\frac{1}{x}) \cdot [\frac{cos(A) + (cos(A)cos(\frac{2\pi}{3}) - sin(A)sin(\frac{2\pi}{3})) + (cos(A)cos(\frac{4\pi}{3}) - sin(A)sin(\frac{4\pi}{3})) }{cos(A)}];

or ( 1 x ) [ c o s ( A ) + ( c o s ( A ) ( 1 2 ) s i n ( A ) ( 3 2 ) ) + ( c o s ( A ) ( 1 2 ) s i n ( A ) ( 3 2 ) ) c o s ( A ) ] ; (\frac{1}{x}) \cdot [\frac{cos(A) + (cos(A)(-\frac{1}{2}) - sin(A)(\frac{\sqrt{3}}{2}) ) + (cos(A)(-\frac{1}{2}) - sin(A)(\frac{-\sqrt{3}}{2})) }{cos(A)}];

or ( 1 x ) c o s ( A ) c o s ( A ) c o s ( A ) ; (\frac{1}{x}) \cdot \frac{cos(A) - cos(A)}{cos(A)};

or ( 1 x ) ( 1 1 ) ; (\frac{1}{x}) \cdot (1-1);

or 0 . \boxed{0}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...