a b = 1 1 2 + 3 2 2 + 5 3 2 + ⋯ + 2 0 0 1 1 0 0 1 2 = 3 1 2 + 5 2 2 + 7 3 2 + ⋯ + 2 0 0 3 1 0 0 1 2
For a and b as defined above, find the integer closest to a − b .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
a − b = 1 + [ i = 1 ∑ 1 0 0 0 2 i + 1 ( i + 1 ) 2 − i 2 ] − 2 0 0 3 1 0 0 1 2
a − b = 1 + [ i = 1 ∑ 1 0 0 0 2 i + 1 i 2 + 2 i + 1 − i 2 ] − 2 0 0 3 1 0 0 1 2
a − b = 1 + [ i = 1 ∑ 1 0 0 0 2 i + 1 2 i + 1 ] − 2 0 0 3 1 0 0 1 2
a − b = 1 + [ i = 1 ∑ 1 0 0 0 1 ] − 2 0 0 3 1 0 0 1 2
a − b = 1 + 1 0 0 0 − 2 0 0 3 1 0 0 1 2
a − b ≈ 5 0 1
Substituting n = 1 into a m + n = a m + a n + m n :
a m + 1 = a m + a 1 + m .
Since a 1 = 1 , a m + 1 = a m + m + 1 . Therefore, a m = a m − 1 + m , a m − 1 = a m − 2 + ( m − 1 ) , a m − 2 = a m − 3 + ( m − 2 ) , and so on until a 2 = a 1 + 2 .
Adding the Left Hand Sides of all of these equations gives a m + a m − 1 + a m − 2 + a m − 3 + ⋯ + a 2 ; adding the Right Hand Sides of these equations gives ( a m − 1 + a m − 2 + a m − 3 + ⋯ + a 1 ) + ( m + ( m − 1 ) + ( m − 2 ) + ⋯ + 2 ) .
These two expressions must be equal; hence a m + a m − 1 + a m − 2 + a m − 3 + ⋯ + a 2 = ( a m − 1 + a m − 2 + a m − 3 + ⋯ + a 1 ) + ( m + ( m − 1 ) + ( m − 2 ) + ⋯ + 2 ) a m = a 1 + ( m + ( m − 1 ) + ( m − 2 ) + ⋯ + 2 ) .
Substituting a 1 = 1 :
a m = 1 + ( m + ( m − 1 ) + ( m − 2 ) + ⋯ + 2 ) = 1 + 2 + 3 + 4 + ⋯ + m = 2 ( m + 1 ) ( m ) . Thus we have a general formula for a m and substituting m = 1 2 : a 1 2 = 2 ( 1 3 ) ( 1 2 ) = ( 1 3 ) ( 6 ) = 5 0 1 .
Problem Loading...
Note Loading...
Set Loading...
a b ⟹ a − b = 1 1 2 + 3 2 2 + 5 3 2 + . . . + 2 0 0 1 1 0 0 1 2 = 3 1 2 + 5 2 2 + 7 3 2 + . . . + 2 0 0 3 1 0 0 1 2 = 1 1 2 + 3 2 2 − 1 2 + 5 3 2 − 2 2 + . . . + 2 0 0 1 1 0 0 1 2 − 1 0 0 0 2 − 2 0 0 3 1 0 0 1 2 = 1 + 3 ( 2 + 1 ) ( 2 − 1 ) + 5 ( 3 + 2 ) ( 3 − 2 ) + . . . + 2 0 0 1 ( 1 0 0 1 + 1 0 0 0 ) ( 1 0 0 1 − 1 0 0 0 ) − 2 0 0 3 1 0 0 1 2 = 1 + 3 ( 3 ) ( 1 ) + 5 ( 5 ) ( 1 ) + . . . + 2 0 0 1 ( 2 0 0 1 ) ( 1 ) − 2 0 0 3 1 0 0 1 2 = 1 0 0 1 × 1 1 + 1 + 1 + . . . + 1 − 2 0 0 3 1 0 0 1 2 = 1 0 0 1 − 2 0 0 3 1 0 0 1 2 ≈ 5 0 1