An algebra problem by Aditya Moger

Algebra Level 4

a = 1 2 1 + 2 2 3 + 3 2 5 + + 100 1 2 2001 b = 1 2 3 + 2 2 5 + 3 2 7 + + 100 1 2 2003 \begin{aligned} a & = \dfrac{1^2}1 + \dfrac{2^2}3 + \dfrac{3^2}5 + \cdots + \dfrac{1001^2}{2001} \\ b & = \dfrac{1^2}3 + \dfrac{2^2}5 + \dfrac{3^2}7 + \cdots + \dfrac{1001^2}{2003} \end{aligned}

For a a and b b as defined above, find the integer closest to a b a-b .


The answer is 501.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Oct 28, 2016

a = 1 2 1 + 2 2 3 + 3 2 5 + . . . + 100 1 2 2001 b = 1 2 3 + 2 2 5 + 3 2 7 + . . . + 100 1 2 2003 a b = 1 2 1 + 2 2 1 2 3 + 3 2 2 2 5 + . . . + 100 1 2 100 0 2 2001 100 1 2 2003 = 1 + ( 2 + 1 ) ( 2 1 ) 3 + ( 3 + 2 ) ( 3 2 ) 5 + . . . + ( 1001 + 1000 ) ( 1001 1000 ) 2001 100 1 2 2003 = 1 + ( 3 ) ( 1 ) 3 + ( 5 ) ( 1 ) 5 + . . . + ( 2001 ) ( 1 ) 2001 100 1 2 2003 = 1 + 1 + 1 + . . . + 1 1001 × 1 100 1 2 2003 = 1001 100 1 2 2003 501 \begin{aligned} a & = \frac {1^2}1 + \frac {2^2}3+ \frac {3^2}5 + ... + \frac {1001^2}{2001} \\ b & = \frac {1^2}3 + \frac {2^2}5+ \frac {3^2}7 + ... + \frac {1001^2}{2003} \\ \implies a - b & = \frac {1^2}1 + \frac {2^2-1^2}3+ \frac {3^2-2^2}5 + ... + \frac {1001^2-1000^2}{2001} - \frac {1001^2}{2003} \\ & = 1 + \frac {(2+1)(2-1)}3+ \frac {(3+2)(3-2)}5 + ... + \frac {(1001+1000)(1001-1000)}{2001} - \frac {1001^2}{2003} \\ & = 1 + \frac {(\cancel 3)(1)}{\cancel 3}+ \frac {(\cancel 5)(1)}{\cancel 5} + ... + \frac {(\cancel {2001})(1)}{\cancel {2001}} - \frac {1001^2}{2003} \\ & = \underbrace{1+1+1+...+1}_{1001 \times 1} - \frac {1001^2}{2003} \\ & = 1001 - \frac {1001^2}{2003} \\ & \approx \boxed{501} \end{aligned}

Nice cancellation factoring!

Calvin Lin Staff - 4 years, 7 months ago
Micah Wood
Oct 30, 2016

a b = 1 + [ i = 1 1000 ( i + 1 ) 2 i 2 2 i + 1 ] 100 1 2 2003 \displaystyle a-b = 1 +\left[\sum_{i=1}^{1000}\dfrac{(i+1)^2-i^2}{2i+1}\right]-\dfrac{1001^2}{2003}

a b = 1 + [ i = 1 1000 i 2 + 2 i + 1 i 2 2 i + 1 ] 100 1 2 2003 \displaystyle \phantom{a-b} = 1 +\left[\sum_{i=1}^{1000}\dfrac{i^2+2i+1-i^2}{2i+1}\right]-\dfrac{1001^2}{2003}

a b = 1 + [ i = 1 1000 2 i + 1 2 i + 1 ] 100 1 2 2003 \displaystyle \phantom{a-b} = 1 +\left[\sum_{i=1}^{1000}\dfrac{2i+1}{2i+1}\right]-\dfrac{1001^2}{2003}

a b = 1 + [ i = 1 1000 1 ] 100 1 2 2003 \displaystyle \phantom{a-b} = 1 +\left[\sum_{i=1}^{1000}1\right]-\dfrac{1001^2}{2003}

a b = 1 + 1000 100 1 2 2003 \displaystyle \phantom{a-b} = 1 +1000 -\dfrac{1001^2}{2003}

a b 501 \displaystyle \phantom{a-b} \approx \boxed{501}

Aditya Moger
Oct 28, 2016

Substituting n = 1 n=1 into a m + n = a m + a n + m n a_{m+n}=a_m+a_n+mn :

a m + 1 = a m + a 1 + m . a_{m+1}=a_m+a_{1}+m.

Since a 1 = 1 a_1 = 1 , a m + 1 = a m + m + 1 a_{m+1}=a_m+m+1 . Therefore, a m = a m 1 + m , a m 1 = a m 2 + ( m 1 ) , a m 2 = a m 3 + ( m 2 ) a_m = a_{m-1} + m, a_{m-1}=a_{m-2}+(m-1), a_{m-2} = a_{m-3} + (m-2) , and so on until a 2 = a 1 + 2 a_2 = a_1 + 2 .

Adding the Left Hand Sides of all of these equations gives a m + a m 1 + a m 2 + a m 3 + + a 2 a_m + a_{m-1} + a_{m-2} + a_{m-3} + \cdots + a_2 ; adding the Right Hand Sides of these equations gives ( a m 1 + a m 2 + a m 3 + + a 1 ) + ( m + ( m 1 ) + ( m 2 ) + + 2 ) (a_{m-1} + a_{m-2} + a_{m-3} + \cdots + a_1) + (m + (m-1) + (m-2) + \cdots + 2) .

These two expressions must be equal; hence a m + a m 1 + a m 2 + a m 3 + + a 2 = ( a m 1 + a m 2 + a m 3 + + a 1 ) + ( m + ( m 1 ) + ( m 2 ) + + 2 ) a m = a 1 + ( m + ( m 1 ) + ( m 2 ) + + 2 ) . a_m + a_{m-1} + a_{m-2} + a_{m-3} + \cdots + a_2 = (a_{m-1} + a_{m-2} + a_{m-3} + \cdots + a_1) + (m + (m-1) + (m-2) + \cdots + 2)\\ a_m = a_1 + (m + (m-1) + (m-2) + \cdots + 2).

Substituting a 1 = 1 a_1 = 1 :

a m = 1 + ( m + ( m 1 ) + ( m 2 ) + + 2 ) = 1 + 2 + 3 + 4 + + m = ( m + 1 ) ( m ) 2 a_m = 1 + (m + (m-1) + (m-2) + \cdots + 2) = 1+2+3+4+ \cdots +m = \frac{(m+1)(m)}{2} . Thus we have a general formula for a m a_m and substituting m = 12 m=12 : a 12 = ( 13 ) ( 12 ) 2 = ( 13 ) ( 6 ) = 501 a_{12} = \frac{(13)(12)}{2} = (13)(6) = 501 .

Can you elaborate what a m a_m is? I'm having difficulty seeing how this is related to the problem.

Calvin Lin Staff - 4 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...