A calculus problem by Aman Dubey

Calculus Level 4

1 ln x x ( x 1 ) d x \large \int_1^\infty \dfrac{\ln x}{x(x-1)} \, dx

Find the value of the closed form of the above integral to 3 decimal places.


The answer is 1.644.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Jun 11, 2017

I = 1 ln x x ( x 1 ) d x Let x = e u , d x = e u d u = 0 u e u e u ( e u 1 ) d u = 0 u e u 1 d u Using the identity below ζ ( s ) = 1 Γ ( s ) 0 u s 1 e u 1 d u I = ζ ( 2 ) = π 2 6 1.645 \begin{aligned} I &= \int_1^\infty \frac {\ln x}{x(x-1)} dx & \small \color{#3D99F6} \text{Let }x=e^u, \ dx = e^u\ du \\&= \int_0^\infty \frac {u e^u}{e^u(e^u-1)} du \\ &= \int_0^\infty \frac {u}{e^u-1} du & \small \color{#3D99F6} \text{Using the identity below} \\ \zeta (s) &= \frac 1{\Gamma(s)} \int_0^\infty \frac {u^{s-1}}{e^u-1} du \\ \implies I &= \zeta(2) = \frac {\pi^2}6 \approx \boxed{1.645} \end{aligned}

Notations:

  • ζ ( ) \zeta (\cdot) denotes the Riemann zeta function.
  • Γ ( ) \Gamma (\cdot) denotes the gamma function. Γ ( 2 ) = 1 ! = 1 \Gamma(2)=1!=1 .
Aman Dubey
Jun 7, 2017

Let I = 1 l n ( x ) x ( x 1 ) I = \int_{1}^{\infty} \frac{ln(x)}{x(x-1)}

l n ( x ) x ( x 1 ) = l n ( x ) x 2 ( 1 1 x ) \frac{ln(x)}{x(x-1)}=\frac{ln(x)}{x^{2}(1-\frac{1}{x})}

l n ( x ) x 2 ( 1 + 1 x + 1 x 2 + . . . ) \frac{ln(x)}{x^{2}}(1+\frac{1}{x}+\frac{1}{x^2}+...) Since 1 < 1 x < 1 -1< \frac{1}{x} <1

Using Substitution x = e t x = e^{t } and further solving we can show that 1 x n l n ( x ) = 1 ( n 1 ) 2 \int_{1}^{\infty}x^{-n}{ln(x)} =\frac{1}{(n-1)^2}

Using this result in above expression we get I = 1 1 2 + 1 2 2 + 1 3 2 + . . . = ζ ( 2 ) = π 2 6 I = \frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...=\zeta(2)=\frac{\pi^2}{6}

Shivam Sharma
Jun 8, 2017

Simply do it like this...

Making change of variables , x = 1/y , then again make a change of variable as , y = 1-y , then the integral become ,

    int(0 to 1) (- ln(1-x))dx/x

I = (- sum(n=1 to infinity)) (1/n) int(0 to 1) (-x^(n-1)) dx

= (sum(n=1 to infinity))(1/n^2)

I = zeta(2)

(OR)

 I = ((pi)^2)/6

              (Q.E.D)

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...