a problem by aman

Algebra Level 3

If a, b, c are 3 different numbers in A.P. then (a + 2b –c) (2b + c –a)(c + a –b) equals

abc 1/2abc 4abc 2abc

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

S P
May 12, 2018

Since a a , b b and c c are in A.P and let x x be the common difference

Then, a = a a=a , b = a + x b=a+x and c = a + 2 x c=a+2x

Therefore, ( a + 2 b c ) ( 2 b + c a ) ( c + a b ) = ( a + 2 ( a + x ) ( a + 2 x ) ) ( 2 ( a + x ) + ( a + 2 x ) a ) ( ( a + 2 x ) + a ( a + x ) ) = ( a + 2 a + 2 x a 2 x ) ( 2 a + 2 x + a + 2 x a ) ( a + 2 x + a a x ) = ( 2 a ) ( 2 a + 4 x ) ( a + x ) = ( 2 a ) ( 2 ( a + 2 x ) ) ( a + x ) = ( 2 a ) ( 2 c ) ( b ) = 4 a b c \begin{aligned} (a+2b-c)(2b+c-a)(c+a-b) & =(a+2(a+x)-(a+2x))(2(a+x)+(a+2x)-a)((a+2x)+a-(a+x)) \\& = (a+2a+2x-a-2x)(2a+2x+a+2x-a)(a+2x+a-a-x) \\& =(2a)(2a+4x)(a+x) \\& =(2a)(2(a+2x))(a+x) \\& =(2a)(2c)(b) \\& =4abc\end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...