A calculus problem by Anik Mandal

Calculus Level 4

Find the value of a + c a+c if lim x ( x 4 + a x 3 + 3 x 2 + b x + 2 x 4 + 2 x 3 c x 2 + 3 x d ) = 4 \lim_{x\to\infty} (\sqrt{x^4+ax^3+3x^2+bx+2}- \sqrt{x^4+2x^3-cx^2+3x-d})=4


The answer is 7.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rishabh Jain
Feb 25, 2016

Let L = lim x ( x 4 + a x 3 + 3 x 2 + b x + 2 x 4 + 2 x 3 c x 2 + 3 x d ) \mathfrak{L}=\lim_{x\to\infty} (\sqrt{x^4+ax^3+3x^2+bx+2}- \sqrt{x^4+2x^3-cx^2+3x-d}) Start by rationalising : = lim x ( ( a 2 ) x 3 + ( c + 3 ) x 2 + ( b 3 ) x + d + 2 ) ( x 4 + a x 3 + 3 x 2 + b x + 2 + x 4 + 2 x 3 c x 2 + 3 x d ) =\lim_{x\to\infty} \dfrac{((a-2)x^3+(c+3)x^2+(b-3)x+d+2)}{(\sqrt{x^4+ax^3+3x^2+bx+2}+ \sqrt{x^4+2x^3-cx^2+3x-d})} For a finite limit(=4) to exist , a 2 = 0 a-2=0 or a = 2 \large a=2 . While the limit of the expression is: L = c + 3 1 + 1 = c + 3 2 \large \mathfrak L=\dfrac{c+3}{1+1}=\dfrac{c+3}{2} which is equal to 4, hence c = 5 \large c=5 . a + c = 7 \huge \therefore a+c=\huge\color{#456461}{\boxed{\color{#D61F06}{\boxed{\color{#007fff}{\textbf{7}}}}}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...