Alpha, Beta Gamma strike again

Algebra Level 5

If α , β , γ \alpha ,\beta,\gamma are the roots of the equation x 3 x 1 = 0 \displaystyle x^3-x-1=0 , then determine the equation whose roots are 1 + α 1 α , 1 + β 1 β , 1 + γ 1 γ \dfrac{1+\alpha}{1-\alpha},\dfrac{1+\beta}{1-\beta},\dfrac{1+\gamma}{1-\gamma} .

x 3 + 7 x 2 x + 1 = 0 x^3+7x^2-x+1=0 x 3 + 7 x 2 + x + 1 = 0 x^3+7x^2+x+1=0 x 3 7 x 2 x + 1 = 0 x^3-7x^2-x+1=0 x 3 7 x 2 x 1 = 0 x^3-7x^2-x-1=0

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Let y = 1 + x 1 x y=\frac{1+x}{1-x} .

Noting that x = 1 x=1 is not a solution to the equation x 3 x 1 = 0 x^3-x-1=0 , it can be 'safely' said that

y ( 1 x ) = 1 + x x = y 1 y + 1 y(1-x)=1+x \implies x=\frac{y-1}{y+1}

Substituting this value of x x in the original equation, we get

( y 1 y + 1 ) 3 y 1 y + 1 1 = 0 ( y 1 ) 3 ( y 1 ) ( y + 1 ) 2 ( y + 1 ) 3 = 0 \left(\frac{y-1}{y+1}\right)^3-\frac{y-1}{y+1}-1=0 \implies (y-1)^3-(y-1)(y+1)^2-(y+1)^3=0

This simplifies to ( y 3 + 7 y 2 y + 1 ) = 0 -\boxed{(y^3+7y^2-y+1)=0}

Hung Woei Neoh
May 22, 2016

From Vieta's formula, we know that

α + β + γ = 0 α β + α γ + β γ = 1 α β γ = 1 \alpha + \beta + \gamma = 0\\ \alpha\beta+\alpha\gamma + \beta\gamma = -1\\ \alpha\beta\gamma = 1

Now, we want to form an equation with roots 1 + α 1 α , 1 + β 1 β , 1 + γ 1 γ \dfrac{1+\alpha}{1-\alpha}, \dfrac{1+\beta}{1-\beta},\dfrac{1+\gamma}{1-\gamma}

To simplify things, we let α = a + 1 , β = b + 1 , γ = c + 1 \alpha = a+1,\beta=b+1,\gamma = c+1

Our roots now are:

1 + ( a + 1 ) 1 ( a + 1 ) , 1 + ( b + 1 ) 1 ( b + 1 ) , 1 + ( c + 1 ) 1 ( c + 1 ) = a + 2 a , b + 2 b , c + 2 c \dfrac{1+(a+1)}{1-(a+1)},\dfrac{1+(b+1)}{1-(b+1)},\dfrac{1+(c+1)}{1-(c+1)} = -\dfrac{a+2}{a},-\dfrac{b+2}{b},-\dfrac{c+2}{c}

The equations above become (do this yourself!):

( a + 1 ) + ( b + 1 ) + ( c + 1 ) = 0 a + b + c = 3 ( a + 1 ) ( b + 1 ) + ( a + 1 ) ( c + 1 ) + ( b + 1 ) ( c + 1 ) = 1 a b + a c + b c = 2 ( a + 1 ) ( b + 1 ) ( c + 1 ) = 1 a b c = 1 (a+1) + (b+1) + (c+1) = 0 \implies a+b+c = -3\\ (a+1)(b+1) + (a+1)(c+1) + (b+1)(c+1) = -1 \implies ab+ac+bc = 2\\ (a+1)(b+1)(c+1) = 1 \implies abc = 1

Now, we find the coefficients for the new equation:

( a + 2 a ) + ( b + 2 b ) + ( c + 2 c ) = ( b c ( a + 2 ) + a c ( b + 2 ) + a b ( c + 2 ) a b c ) = ( 3 a b c + 2 ( a b + a c + b c ) a b c ) = ( 3 ( 1 ) + 2 ( 2 ) 1 ) = 7 \left(-\dfrac{a+2}{a}\right)+\left(-\dfrac{b+2}{b}\right)+\left(-\dfrac{c+2}{c}\right)\\ =-\left(\dfrac{bc(a+2) + ac(b+2) + ab(c+2)}{abc}\right)\\ =-\left(\dfrac{3abc + 2(ab+ac+bc)}{abc}\right)\\ =-\left(\dfrac{3(1) + 2(2)}{1}\right)\\ =-7

( a + 2 a ) ( b + 2 b ) + ( a + 2 a ) ( c + 2 c ) + ( b + 2 b ) ( c + 2 c ) = ( a + 2 ) ( b + 2 ) a b + ( a + 2 ) ( c + 2 ) a c + ( b + 2 ) ( c + 2 ) b c = c ( a b + 2 a + 2 b + 4 ) + b ( a c + 2 a + 2 c + 4 ) + a ( b c + 2 b + 2 c + 4 ) a b c = 3 a b c + 4 ( a b + a c + b c ) + 4 ( a + b + c ) a b c = 3 ( 1 ) + 4 ( 2 ) + 4 ( 3 ) 1 = 1 \left(-\dfrac{a+2}{a}\right)\left(-\dfrac{b+2}{b}\right)+\left(-\dfrac{a+2}{a}\right)\left(-\dfrac{c+2}{c}\right)+\left(-\dfrac{b+2}{b}\right)\left(-\dfrac{c+2}{c}\right)\\ =\dfrac{(a+2)(b+2)}{ab} + \dfrac{(a+2)(c+2)}{ac} + \dfrac{(b+2)(c+2)}{bc}\\ =\dfrac{c(ab+2a+2b+4)+b(ac+2a+2c+4)+a(bc+2b+2c+4)}{abc}\\ =\dfrac{3abc+4(ab+ac+bc)+4(a+b+c)}{abc}\\ =\dfrac{3(1) + 4(2) + 4(-3)}{1}\\ =-1

( a + 2 a ) ( b + 2 b ) ( c + 2 c ) = ( a + 2 ) ( b + 2 ) ( c + 2 ) a b c = a b c + 2 a b + 2 a c + 2 b c + 4 a + 4 b + 4 c + 8 a b c = 1 + 2 ( 2 ) + 4 ( 3 ) + 8 1 = 1 \left(-\dfrac{a+2}{a}\right)\left(-\dfrac{b+2}{b}\right)\left(-\dfrac{c+2}{c}\right)\\ =-\dfrac{(a+2)(b+2)(c+2)}{abc}\\ =-\dfrac{abc+2ab+2ac+2bc+4a+4b+4c+8}{abc}\\ =-\dfrac{1+2(2)+4(-3)+8}{1}\\ =-1

Use these values to form the equation:

x 3 ( 7 ) x 2 + ( 1 ) x ( 1 ) = 0 x 3 + 7 x 2 x + 1 = 0 x^3 - (-7)x^2 + (-1) x - (-1) = 0\\ \boxed{x^3 + 7x^2 - x + 1 = 0}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...