An algebra problem by Anik Mandal

Algebra Level 4

Find the number of solutions to the equation x 2 x = 4 | \lfloor x \rfloor - 2x |= 4 .

Notation : \lfloor \cdot \rfloor denotes the floor function .


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Sabhrant Sachan
Jul 14, 2016

x 2 x = 4 x { x } = 4 , 4 x + { x } = 4 , 4 Let x be equal to I + f , Where I is the integral part of x and 0 < f < 1 I + 2 f = 4 , 4 For f = 0 I = 4 , 4 For f = 1 2 I = 3 , 4 No other values of f will give us an integer in the LHS Possible values of x : 4 , 3.5 , 4 , 4.5 Our answer is 4 |\lfloor x \rfloor -2x|=4 \implies -x-\{x\} = -4,4 \\ x+\{x\} = 4,-4 \\ \text{Let }x \text{ be equal to } \color{royalblue}I+\color{#3D99F6}f , \text{Where } \color{royalblue}I \text{ is the integral part of x and } 0<\color{#3D99F6}f<1 \\ \color{royalblue}I+2\color{#3D99F6}f=4,-4 \\ \text{For } \color{#3D99F6}f=0 \rightarrow \color{royalblue}I=4,-4 \\ \text{For } \color{#3D99F6}f=\dfrac{1}2 \rightarrow \color{royalblue}I=3,-4 \\ \text{No other values of }f \text{ will give us an integer in the LHS} \\ \text{Possible values of } x : 4,3.5,-4,-4.5 \\ \text{Our answer is 4}

But we can't rule out the possibility of x tending to - 5 (or just less than -5) and also x tending to 3 (or just less than 3) Hence the actual answer should be 6

-5.00000....1, -4.5, - 4, 2.99999999......, 3.5, 4

Neil Shah - 2 years, 3 months ago

There's two combinations about the two absolute values. Two possible values of X, and two possible values of function. 2x2=4

Not quite. The floor function can do weird things to the number of roots.

Calvin Lin Staff - 4 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...