A problem by Ankit Nigam

Level pending

If from each of the three boxes containing 3 white and 1 black, 2 white and 2 black, 1 white and 3 black balls, and ball is drawn at random, then the probability that 2 white ball and 1 black will be drawn is

PRACTICE FOR BITSAT HERE

3/16 13/32 1/4 1/32

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Ankit Nigam
Apr 22, 2015

I n a s i m p l e w a y In\quad a\quad simple\quad way

C a s e 1 : W W B p 1 = 3 4 × 2 4 × 3 4 Case\quad 1:\quad WWB\\ { p }_{ 1 }=\frac { 3 }{ 4 } \times \frac { 2 }{ 4 } \times \frac { 3 }{ 4 }

C a s e 2 : W B W p 2 = 3 4 × 2 4 × 1 4 Case\quad 2:\quad WBW\\ { p }_{ 2 }=\frac { 3 }{ 4 } \times \frac { 2 }{ 4 } \times \frac { 1 }{ 4 }

C a s e 3 : B W W p 3 = 1 4 × 2 4 × 1 4 Case\quad 3:\quad BWW\\ { p }_{ 3 }=\frac { 1 }{ 4 } \times \frac { 2 }{ 4 } \times \frac { 1 }{ 4 }

p = p 1 + p 2 + p 3 = 26 64 = 13 32 \therefore p={ p }_{ 1 }+{ p }_{ 2 }+{ p }_{ 3 }\\ =\frac { 26 }{ 64 } \\ \boxed { =\frac { 13 }{ 32 } }

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...