Simplify Each Of These Fractions First!

Algebra Level 3

1 1 + 1 2 + 1 4 + 2 1 + 2 2 + 2 4 + 3 1 + 3 2 + 3 4 + + 99 1 + 9 9 2 + 9 9 4 \dfrac 1{1+1^2 + 1^4} + \dfrac 2{1+2^2 + 2^4} + \dfrac 3{1+3^2 + 3^4} +\cdots + \dfrac {99}{1+99^2 + 99^4}

The value of the expression above lies between which of the following pairs of numbers?

0.52 and 1 0.48 and 0.49 0.46 and 0.47 0.49 and 0.50 0.47 and 0.48

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

S = n = 1 99 n n + n 2 + n 4 = n = 1 99 n ( n 2 n + 1 ) ( n 2 + n + 1 ) = 1 2 n = 1 99 ( 1 n 2 n + 1 1 n 2 + n + 1 ) = 1 2 n = 1 99 ( 1 n 2 n + 1 1 ( n + 1 ) 2 ( n + 1 ) + 1 ) = 1 2 ( n = 1 99 1 n 2 n + 1 n = 2 100 1 n 2 n + 1 ) = 1 2 ( 1 1 1 10 0 2 100 + 1 ) > 1 2 ( 0.9999 ) = 0.49995 \begin{aligned} S & = \sum_{n=1}^{99} \frac n{n+n^2+n^4} \\ & = \sum_{n=1}^{99} \frac n{(n^2-n+1)(n^2+n+1)} \\ & = \frac 12 \sum_{n=1}^{99} \left(\frac 1{n^2-n+1} - \frac 1{n^2+n+1}\right) \\ & = \frac 12 \sum_{n=1}^{99} \left(\frac 1{n^2-n+1} - \frac 1{(n+1)^2-(n+1)+1}\right) \\ & = \frac 12 \left(\sum_{n=1}^{99} \frac 1{n^2-n+1} - \sum_{n=2}^{100} \frac 1{n^2-n+1} \right) \\ & = \frac 12 \left(\frac 11 - \frac 1{100^2-100+1} \right) \\ & > \frac 12 (0.9999) = 0.49995 \end{aligned}

0.49 < S < 0.5 \implies \boxed{0.49 < S < 0.5} .

Partial fractioning these rational functions often creates a telescoping which makes results transparent. Heaviside's method can compute numerators quickly, especially for unrepeated linear factors.

Will Heierman - 4 years, 7 months ago
Anshu Garg
Nov 6, 2016

Let us take: x 4 + x 2 + 1 = ( x 2 + x + 1 ) ( x 2 x + 1 ) x^4+x^2+1=(x^2+x+1)(x^2-x+1)

Using this the above expression can be reduced into = 1 1.3 \frac{1}{1.3} + 2 3.7 \frac{2}{3.7} + 3 7.13 \frac{3}{7.13} ..................................................... 99 9703.9901 \frac{99}{9703.9901} )

Taking 1 2 \frac{1}{2} common from each term = 1 2 \frac{1}{2} [1- 1 3 \frac{1}{3} ]+ 1 2 \frac{1}{2} [ 1 3 \frac{1}{3} - 1 7 \frac{1}{7} ]+ 1 2 \frac{1}{2} [ 1 7 \frac{1}{7} - 1 13 \frac{1}{13} ]................................................ 1 2 \frac{1}{2} [ 1 9703 \frac{1}{9703} - 1 9901 \frac{1}{9901} ]

= 1 2 \frac{1}{2} [1- 1 3 \frac{1}{3} + 1 3 \frac{1}{3} - 1 7 \frac{1}{7} +.................................................... 1 9703 \frac{1}{9703} - 1 9901 \frac{1}{9901} ] = 4500 9901 \frac{4500}{9901}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...