Find the integer n satisfying ( n + 1 ) ! + 3 ( n − 1 ) ! ( n + 1 ) ! − 3 ( n − 1 ) ! = 5 9 5 3 .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Is this wrong?? (n+1)! = n! X (n+1)
I used this but I got a wrong answer..
( n + 1 ) ! + 3 ( n − 1 ) ! ( n + 1 ) ! − 3 ( n − 1 ) ! = 5 9 5 3 ⇒ ( n + 1 ) ! − 3 ( n − 1 ) ! − ( n + 1 ) ! − 3 ( n − 1 ) ! ( n + 1 ) ! − 3 ( n − 1 ) ! + ( n + 1 ) ! + 3 ( n − 1 ) ! = 5 3 − 5 9 5 3 + 5 9 ⇒ ( n − 1 ) ! ( n + 1 ) ! = − 6 1 1 2 × ( − 3 ) = 5 6 ⇒ n ( n + 1 ) = 5 6 ⇒ n 2 + n − 5 6 = 0 ⇒ ( n + 8 ) ( n − 7 ) = 0 ⇒ n = − 8 , 7
Since, factorial of a negative number is undefined the only answer will be 7 .
Problem Loading...
Note Loading...
Set Loading...
( n + 1 ) ! + 3 ( n − 1 ) ! ( n + 1 ) ! − 3 ( n − 1 ) ! = ( n − 1 ) ! ( n − 1 ) ! × n ( n + 1 ) + 3 n ( n + 1 ) − 3 = 5 9 5 3
5 9 ( n ( n + 1 ) − 3 ) = 5 3 ( n ( n + 1 ) + 3 )
6 ( n ( n + 1 ) ) = 3 ( 5 3 + 3 9 )
n 2 + n = 2 5 3 + 5 9
n 2 + n − 5 6 = 0
n = 7 , − 8
n − 1 ≥ 0 → n = 7