A number theory problem by Aquilino Madeira

Find the integer n n satisfying ( n + 1 ) ! 3 ( n 1 ) ! ( n + 1 ) ! + 3 ( n 1 ) ! = 53 59 \dfrac{{(n + 1)!\, - 3(n - 1)!}}{{(n + 1)!\, + 3(n - 1)!}} = \dfrac{{53}}{{59}} .


The answer is 7.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Sean Sullivan
Jul 22, 2015

( n + 1 ) ! 3 ( n 1 ) ! ( n + 1 ) ! + 3 ( n 1 ) ! = ( n 1 ) ! ( n 1 ) ! × n ( n + 1 ) 3 n ( n + 1 ) + 3 = 53 59 \frac{(n+1)!-3(n-1)!}{(n+1)!+3(n-1)!}=\frac{(n-1)!}{(n-1)!}\times \frac{n(n+1)-3}{n(n+1)+3}=\frac{53}{59}

59 ( n ( n + 1 ) 3 ) = 53 ( n ( n + 1 ) + 3 ) 59(n(n+1)-3)=53(n(n+1)+3)

6 ( n ( n + 1 ) ) = 3 ( 53 + 39 ) 6(n(n+1))=3(53+39)

n 2 + n = 53 + 59 2 n^{2}+n=\frac{53+59}{2}

n 2 + n 56 = 0 n^{2}+n-56=0

n = 7 , 8 n=7,-8

n 1 0 n = 7 n-1\ge0 \rightarrow n=\boxed{7}

Is this wrong?? (n+1)! = n! X (n+1)

I used this but I got a wrong answer..

Sagar Shah - 5 years, 8 months ago
Md Omur Faruque
Aug 8, 2015

( n + 1 ) ! 3 ( n 1 ) ! ( n + 1 ) ! + 3 ( n 1 ) ! = 53 59 \boldsymbol {\frac{(n+1)!-3(n-1)!}{(n+1)!+3(n-1)!}=\frac{53}{59}} ( n + 1 ) ! 3 ( n 1 ) ! + ( n + 1 ) ! + 3 ( n 1 ) ! ( n + 1 ) ! 3 ( n 1 ) ! ( n + 1 ) ! 3 ( n 1 ) ! = 53 + 59 53 59 \boldsymbol {\Rightarrow \frac{(n+1)!-3(n-1)!+(n+1)!+3(n-1)!}{(n+1)!-3(n-1)!-(n+1)!-3(n-1)!}=\frac{53+59}{53-59}} ( n + 1 ) ! ( n 1 ) ! = 112 6 × ( 3 ) = 56 \boldsymbol {\Rightarrow \frac{(n+1)!}{(n-1)!} = \frac {112}{-6}\times(-3)=56} n ( n + 1 ) = 56 \boldsymbol {\Rightarrow n(n+1)=56} n 2 + n 56 = 0 \boldsymbol {\Rightarrow n^2+n-56=0} ( n + 8 ) ( n 7 ) = 0 \boldsymbol {\Rightarrow (n+8)(n-7)=0} n = 8 , 7 \boldsymbol {\Rightarrow n=-8,7}

Since, factorial of a negative number is undefined the only answer will be 7 \color{#69047E} {\boxed 7} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...