A geometry problem by arghya starx

Geometry Level 1

(Sec A + tan A)( 1 - sin A)=

cot A tan A cos A cosec A

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

9 solutions

Daniel Liu
Aug 15, 2014

( sec A + tan A ) ( 1 sin A ) = ( 1 + sin A cos A ) ( 1 sin A ) = 1 sin 2 A cos A = cos 2 A cos A = cos A \begin{aligned}(\sec A + \tan A)(1-\sin A)&= \left(\dfrac{1+\sin A}{\cos A}\right)(1-\sin A)\\ &= \dfrac{1-\sin^2 A}{\cos A}\\ &= \dfrac{\cos^2 A}{\cos A}\\ &= \boxed{\cos A}\end{aligned}

another way put a=30 deg in question and answers the one which matches is correct

ravi teja - 6 years, 9 months ago
Frank Rodriguez
Sep 2, 2014

( s e c ( A ) + t a n ( A ) ) ( 1 s i n ( A ) ) ( 1 c o s ( A ) + s i n ( A ) c o s ( A ) ) ( 1 s i n ( A ) 1 c o s ( A ) s i n ( A ) c o s ( A ) + s i n ( A ) c o s ( A ) s i n 2 ( A ) c o s ( A ) 1 s i n 2 ( A ) c o s ( A ) c o s 2 ( A ) c o s ( A ) c o s ( A ) (sec(A)+tan(A))(1-sin(A))\\ (\frac { 1 }{ cos(A) } +\frac { sin(A) }{ cos(A) } )(1-sin(A)\\ \frac { 1 }{ cos(A) } -\frac { sin(A) }{ cos(A) } +\frac { sin(A) }{ cos(A) } -\frac { { sin }^{ 2 }(A) }{ cos(A) } \\ \frac { 1-{ sin }^{ 2 }(A) }{ cos(A) } \\ \frac { { cos }^{ 2 }(A) }{ cos(A) } \\ cos(A)

Vishnu Ks
Jan 2, 2015

(secA+tanA)(1-sinA)=(1-sinA)/(secA-tanA)=(1-sinA)/(secA(1-sinA))=1/secA=cosA

Junaid Zahid
Sep 29, 2014

SIMPLY PUT THE VALUES AND FIND ANSWER IN OPTIONS SAY, A=O Sec O=1, Tan 0=0, Sin 0 =O THEN, (Sec A + tan A)(1- Sin A) = ( 1 +0)(1-o) =(1)(1) =1 and we all know that cos 0 = 1 so the answer is cosA

Esha Aslam
Sep 24, 2014

(1/cosA +sinA/cosA)(1-sinA) =(1+sinA)(1-sinA)/cosA =(1-sin^2A)/cosA =cos^2A/cosA= cosA

(secA+tanA)(1-sinA)

Multiply this expression by (1+sinA)/(1+sinA)

=[(secA+tanA)(cos^2A)]/(1+sinA)

=(cosA+sinAcosA)/(1+sinA)

=[cosA(1+sinA)]/(1+sinA)

=cosA

Kinjan Agar
Sep 9, 2014

=(1/cosa +sinA/cosA)(1-sinA) Taking LCM,we get =(1+sinA/cosA)(1-sinA)

=(1-sin^2A)/cosa

=Cos^2A/cosa

=CosA

Karan Gujar
Sep 7, 2014

So simple,ask sumthing cumples

Nusrin Habeeb
Aug 22, 2014

(sec A + tan A)(1- sin A)= sec A + tan A - tan A - tan A sin A sec A - tan A sin A sec A - sin A . (sin A /cos A) sec A (1- sin ^2 A) sec A . cos ^2 A = cos A

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...