A problem by Arpita Karkera

Level pending

Let the function f satisfies f(x).f'(-x)=f(-x).f'(x) for all x and f(0)=3. Then f(2015).f(-2015)=


The answer is 9.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Arpita Karkera
Apr 30, 2015

Given f ( x ) . f ( x ) = f ( x ) . f ( x ) f(x).f'(-x)=f(-x).f'(x)

f ( x ) . f ( x ) f ( x ) . f ( x ) = 0 f(x).f'(-x)-f(-x).f'(x)=0

f ( x ) . f ( x ) = c f(x).f(-x)=c

f ( 0 ) = 3 f(0)=3

f ( 0 ) . f ( 0 ) = 9 f(0).f(0)=9

c = 9 c=9

f ( 2015 ) . f ( 2015 ) = 9 f(2015).f(-2015)=9

Vighnesh Raut
Apr 29, 2015

f ( x ) f ( x ) = f ( x ) f ( x ) f ( x ) f ( x ) = f ( x ) f ( x ) f\left( x \right) f^{ ' }\left( -x \right) =f\left( -x \right) f^{ ' }\left( x \right) \\ \frac { f\left( x \right) }{ f\left( -x \right) } =\frac { f^{ ' }\left( x \right) }{ f^{ ' }\left( -x \right) } On comparing, we get f ( x ) = k f ( x ) f^{ ' }\left( x \right) =kf\left( x \right) Let f ( x ) = y f\left( x \right)=y . So, k y = y k y = d y d x k d x = d y y ln y = k x + k C y = e k x + k C y = A e k x ky=y'\\ ky=\frac { dy }{ dx } \\ \int {k dx } =\int { \frac { dy }{ y } } \\ \ln { y } =kx+kC\\ y={ e }^{ kx+kC }\\ y=A{ e }^{ kx } f ( x ) = A e k x \therefore f\left( x \right)=A{ e }^{ kx } Now, f(0)=3 so, A=3 . Hence, f ( x ) = 3 e k x f\left( x \right) =3{ e }^{k x } So, f ( 2015 ) f ( 2015 ) = 3 e 2015 k × 3 e 2015 k = 9 f\left( 2015 \right) f\left( -2015 \right) =3{ e }^{ 2015k }\times 3{ e }^{ -2015k }=9

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...