Let a n = ∫ n + 1 1 n 1 tan − 1 ( n x ) d x and b n = ∫ n + 1 1 n 1 sin − 1 ( n x ) d x , then n → ∞ lim b n a n has the value equal to
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Let's use the fact that for a continuous, integrable function f ( x ) , lim a → 1 1 − a 1 ∫ a 1 f ( x ) d x = f ( 1 ) .
From the first line, we can conclude that since a n = n n + 1 × ( n + 1 1 ∫ n + 1 n 1 tan − 1 ( u ) d u ) , hence lim n ( n + 1 ) a n = lim 1 n + 1 × ∫ n + 1 n 1 tan − 1 ( u ) d u = tan − 1 1 .
Similarly, lim n ( n + 1 ) b n = sin − 1 1 .
Challenge Master: I don't see how you computed the limit of a n alone, it is zero, isn't it? Please I want some clarification.
Log in to reply
Oh sorry, I mixed up the n 1 . It would be lim n 2 a n = tan − 1 1 instead. Let me update that.
Log in to reply
Thanks I got the point :) this fact is very useful .
Problem Loading...
Note Loading...
Set Loading...
Use the Substitution u = n x in both integrals:
a n = n 1 ∫ n + 1 n 1 tan − 1 ( u ) d u
b n = n 1 ∫ n + 1 n 1 sin − 1 ( u ) d u
n → ∞ lim b n a n = n → ∞ lim n 1 ∫ n + 1 n 1 sin − 1 ( u ) d u n 1 ∫ n + 1 n 1 tan − 1 ( u ) d u
= n → ∞ lim ∫ n + 1 n 1 sin − 1 ( u ) d u ∫ n + 1 n 1 tan − 1 ( u ) d u
Direct Substitution Yields an Indetermined form:
= L’Hopital Rule n → ∞ lim d n d ∫ n + 1 n 1 sin − 1 ( u ) d u d n d ∫ n + 1 n 1 tan − 1 ( u ) d u
= Fundamental Theorem of Calculus n → ∞ lim − ( n + 1 n ) ′ sin − 1 ( n + 1 n ) − ( n + 1 n ) ′ tan − 1 ( n + 1 n )
= n → ∞ lim sin − 1 ( n + 1 n ) tan − 1 ( n + 1 n )
= sin − 1 ( 1 ) tan − 1 ( 1 )
= 2 1