Inverted Integrated Limits

Calculus Level 4

Let a n = 1 n + 1 1 n tan 1 ( n x ) d x \displaystyle { a }_{ n }=\int _{ \frac { 1 }{ n+1 } }^{ \frac { 1 }{ n } }{ \tan ^{ -1 }{ (nx) } } dx and b n = 1 n + 1 1 n sin 1 ( n x ) d x \displaystyle { b }_{ n }=\int _{ \frac { 1 }{ n+1 } }^{ \frac { 1 }{ n } }{ \sin ^{ -1 }{ (nx) } } dx , then lim n a n b n \displaystyle \lim _{ n\rightarrow \infty }{ \frac { { a }_{ n } }{ { b }_{ n } } } has the value equal to

-1 1 0 1 2 \frac{1}{2}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Hasan Kassim
Aug 5, 2015

Use the Substitution u = n x u=nx in both integrals:

a n = 1 n n n + 1 1 tan 1 ( u ) d u \displaystyle a_n = \frac{1}{n} \int_{\frac{n}{n+1}}^{1} \tan ^{-1} (u) du

b n = 1 n n n + 1 1 sin 1 ( u ) d u \displaystyle b_n = \frac{1}{n} \int_{\frac{n}{n+1}}^{1} \sin ^{-1} (u) du

lim n a n b n = lim n 1 n n n + 1 1 tan 1 ( u ) d u 1 n n n + 1 1 sin 1 ( u ) d u \displaystyle \lim_{n\to \infty } \frac{a_n}{b_n} = \lim_{n\to \infty } \frac{\frac{1}{n} \int_{\frac{n}{n+1}}^{1} \tan ^{-1} (u) du }{\frac{1}{n} \int_{\frac{n}{n+1}}^{1} \sin ^{-1} (u) du}

= lim n n n + 1 1 tan 1 ( u ) d u n n + 1 1 sin 1 ( u ) d u \displaystyle = \lim_{n\to \infty } \frac{ \int_{\frac{n}{n+1}}^{1} \tan ^{-1} (u) du }{\int_{\frac{n}{n+1}}^{1} \sin ^{-1} (u) du}

Direct Substitution Yields an Indetermined form:

= L’Hopital Rule lim n d d n n n + 1 1 tan 1 ( u ) d u d d n n n + 1 1 sin 1 ( u ) d u \displaystyle \overset{{\color{#D61F06}{\text{L'Hopital Rule}}}}{=} \lim_{n\to \infty } \frac{ \frac{d}{dn} \int_{\frac{n}{n+1}}^{1} \tan ^{-1} (u) du }{\frac{d}{dn} \int_{\frac{n}{n+1}}^{1} \sin ^{-1} (u) du}

= Fundamental Theorem of Calculus lim n ( n n + 1 ) tan 1 ( n n + 1 ) ( n n + 1 ) sin 1 ( n n + 1 ) \displaystyle \overset{{\color{#D61F06}{\text{Fundamental Theorem of Calculus}}}}{=} \lim_{n\to \infty } \frac{ - (\frac{n}{n+1})' \tan ^{-1} (\frac{n}{n+1} ) }{ - (\frac{n}{n+1})' \sin ^{-1} (\frac{n}{n+1} ) }

= lim n tan 1 ( n n + 1 ) sin 1 ( n n + 1 ) \displaystyle = \lim_{n\to \infty } \frac{\tan ^{-1} (\frac{n}{n+1} )}{\sin ^{-1} (\frac{n}{n+1} )}

= tan 1 ( 1 ) sin 1 ( 1 ) \displaystyle = \frac{\tan^{-1} (1)}{\sin^{-1} (1)}

= 1 2 \displaystyle =\boxed{ \frac{1}{2}}

Moderator note:

Let's use the fact that for a continuous, integrable function f ( x ) f(x) , lim a 1 1 1 a a 1 f ( x ) d x = f ( 1 ) \lim_{a \rightarrow 1 } \frac{1}{1-a} \int_a ^ 1 f(x) \, dx = f(1) .

From the first line, we can conclude that since a n = n + 1 n × ( 1 n + 1 n n + 1 1 tan 1 ( u ) d u ) a_n = \frac{n+1}{n} \times \left( \frac{ 1}{n+1} \int_{\frac{n}{n+1}}^{1} \tan ^{-1} (u) du \right) , hence lim n ( n + 1 ) a n = lim n + 1 1 × n n + 1 1 tan 1 ( u ) d u = tan 1 1 \lim n(n+1) a_n = \lim \frac{n+1} {1} \times \int_{\frac{n}{n+1}}^{1} \tan ^{-1} (u) du =\tan^{-1} 1 .

Similarly, lim n ( n + 1 ) b n = sin 1 1 \lim n(n+1) b_n = \sin^{-1} 1 .

Challenge Master: I don't see how you computed the limit of a n a_n alone, it is zero, isn't it? Please I want some clarification.

@Calvin Lin

Hasan Kassim - 5 years, 10 months ago

Log in to reply

Oh sorry, I mixed up the 1 n \frac{1}{n} . It would be lim n 2 a n = tan 1 1 \lim n^2 a_n = \tan^{-1} 1 instead. Let me update that.

Calvin Lin Staff - 5 years, 10 months ago

Log in to reply

Thanks I got the point :) this fact is very useful .

Hasan Kassim - 5 years, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...