A problem by Arpita Karkera

Level pending

If f ( x ) = 4 x 4 x + 2 f\left( x \right) =\frac { { 4 }^{ x } }{ { 4 }^{ x }+2 } , then f ( 1 2008 ) + f ( 2 2008 ) + f ( 3 2008 ) + . . . + f ( 2007 2008 ) 1000 \left\lfloor f\left( \frac { 1 }{ 2008 } \right) +f\left( \frac { 2 }{ 2008 } \right) +f\left( \frac { 3 }{ 2008 } \right) +...+f\left( \frac { 2007 }{ 2008 } \right) \right\rfloor -1000 is equal to... (where, . \left\lfloor . \right\rfloor denotes the greatest integer function)


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Otto Bretscher
May 12, 2015

f ( x ) f(x) is a logistic functon whose graph is symmetric with respect to the point ( 1 2 , 1 2 ) , \left(\frac{1}{2},\frac{1}{2}\right), its point of inflection. Thus f ( x ) + f ( 1 x ) = 1 f(x)+f(1-x)=1 for all x x . Now f ( k 2008 ) + f ( 2008 k 2008 ) = 1 f\left(\frac{k}{2008}\right)+f\left(\frac{2008-k}{2008}\right) = 1 for k = 1...1003 k=1...1003 and f ( 1004 2008 ) = f ( 1 2 ) = 1 2 f\left(\frac{1004}{2008}\right)=f\left(\frac{1}{2}\right)=\frac{1}{2} , so 1003.5 1000 = 3 . \lfloor{1003.5}\rfloor-1000=\boxed{3}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...